Bunch Length Measurements at the ATF Damping Ring in April 2000 (open access)

Bunch Length Measurements at the ATF Damping Ring in April 2000

We want to accurately know the energy spread and bunch length dependence on current in the ATF damping ring. One reason is to know the strength of the impedance: From the energy spread measurements we know whether or not we are above the threshold to the microwave instability, and from the energy spread and bunch length measurements we find out the extent of potential-well bunch lengthening (PWBL). Another reason for these measurements is to help in our understanding of the intra-beam scattering (IBS) effect in the ATF. The ATF as it is now, running below design energy and with the wigglers turned off, is strongly affected by IBS. To check for consistency with IBS theory of, for example, the measured vertical beam size, we need to know all dimensions of the beam, including the longitudinal one. But beyond this practical reason for studying IBS, IBS is currently a hot research topic at many accelerators around the world (see e.g. Ref. [1]), and the effect in actual machines is not well understood. Typically, when comparing theory with measurements fudge factors are needed to get agreement (see e.g. Ref. [1]). With its strong IBS effect, the ATF is an ideal machine for …
Date: December 19, 2005
Creator: Bane, K. L. F.; Naito, T.; Okugi, T. & Urakawa, J.
Object Type: Report
System: The UNT Digital Library
Clean Assembly Practices to Prevent Contamination and Damage to Optics (open access)

Clean Assembly Practices to Prevent Contamination and Damage to Optics

A key lesson learned from the earliest optics installed in the National Ignition Facility (NIF) was that the traditional approach for maintaining cleanliness, such as the use of cleanrooms and associated garments and protocols, is inadequate. Assembly activities often negate the benefits provided by cleanrooms, and in fact generate contamination with high damage potential. As a result, NIF introduced ''clean assembly protocols'' and related practices to supplement the traditional clean room protocols. These new protocols included ''clean-as-you-go'' activities and regular bright light inspections. Introduction of these new protocols has greatly reduced the particle contamination found on more recently installed optics. In this paper we will describe the contamination mechanisms we have observed and the details of the clean assembly protocols we have successfully introduced to mitigate them.
Date: December 19, 2005
Creator: Pryatel, J & Gourdin, W H
Object Type: Article
System: The UNT Digital Library
Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices (open access)

Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather …
Date: December 19, 2005
Creator: Bolinger, Mark & Wiser, Ryan
Object Type: Report
System: The UNT Digital Library
CONSIDERATIONS OF THE ROLE OF THE CATHODIC REGION IN LOCALIZED CORROSION (open access)

CONSIDERATIONS OF THE ROLE OF THE CATHODIC REGION IN LOCALIZED CORROSION

None
Date: December 19, 2005
Creator: KELLY, R.G., LANDAU, U., PAYER, J.H.
Object Type: Article
System: The UNT Digital Library
Development of Permanent Mechanical Repair Sleeve for Plastic Pipe: Final Report (open access)

Development of Permanent Mechanical Repair Sleeve for Plastic Pipe: Final Report

None
Date: December 19, 2005
Creator: Patadia, Hitesh
Object Type: Report
System: The UNT Digital Library
Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles (open access)

Development of Technologies for a High Efficiency, Very Low Emission, Diesel Engine for Light Trucks and Sport Utility Vehicles

Cummins Inc., in partnership with the Department of Energy, has developed technology for a new highly efficient, very low emission, diesel engine for light trucks and sport utility vehicles. This work began in April 1997, and started with very aggressive goals for vehicles in the 5751 to 8500 pound GCW weight class. The primary program goals were as follows: (1) EMISSIONS -- NOx = 0.50 g/mi; PM = 0.05 g/mi; CO = 2.8 g/mi; and NMHC = 0.07 g/mi. California decided to issue new and even tougher LEV II light truck regulations late in 1999. EPA also issued its lower Tier 2 regulations late in 2000. The net result was that the targets for this diesel engine project were lowered, and these goals were eventually modified by the publication of Federal Tier 2 emission standards early in 2000 to the following: NOx = 0.07 g/mi; and PM = 0.01 g/mi. (2) FUEL ECONOMY -- The fuel economy goal was 50 percent MPG improvement (combined city/highway) over the 1997 gasoline powered light truck or sport utility vehicle in the vehicle class for which this diesel engine is being designed to replace. The goal for fuel economy remained at 50 percent MPG …
Date: December 19, 2005
Creator: Stang, John H.
Object Type: Report
System: The UNT Digital Library
Estimation of Leak Rate from the Emergency Pump Well in L-Area Complex Basin (open access)

Estimation of Leak Rate from the Emergency Pump Well in L-Area Complex Basin

This report provides an estimate of the leak rate from the emergency pump well in L-basin that is to be expected during an off-normal event. This estimate is based on expected shrinkage of the engineered grout (i.e., controlled low strength material) used to fill the emergency pump well and the header pipes that provide the dominant leak path from the basin to the lower levels of the L-Area Complex. The estimate will be used to provide input into the operating safety basis to ensure that the water level in the basin will remain above a certain minimum level. The minimum basin water level is specified to ensure adequate shielding for personnel and maintain the ''as low as reasonably achievable'' concept of radiological exposure. The need for the leak rate estimation is the existence of a gap between the fill material and the header pipes, which penetrate the basin wall and would be the primary leak path in the event of a breach in those pipes. The gap between the pipe and fill material was estimated based on a full scale demonstration pour that was performed and examined. Leak tests were performed on full scale pipes as a part of this …
Date: December 19, 2005
Creator: Duncan, A
Object Type: Report
System: The UNT Digital Library
Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores (open access)

Experimental Criticality Benchmarks for SNAP 10A/2 Reactor Cores

This report describes computational benchmark models for nuclear criticality derived from descriptions of the Systems for Nuclear Auxiliary Power (SNAP) Critical Assembly (SCA)-4B experimental criticality program conducted by Atomics International during the early 1960's. The selected experimental configurations consist of fueled SNAP 10A/2-type reactor cores subject to varied conditions of water immersion and reflection under experimental control to measure neutron multiplication. SNAP 10A/2-type reactor cores are compact volumes fueled and moderated with the hydride of highly enriched uranium-zirconium alloy. Specifications for the materials and geometry needed to describe a given experimental configuration for a model using MCNP5 are provided. The material and geometry specifications are adequate to permit user development of input for alternative nuclear safety codes, such as KENO. A total of 73 distinct experimental configurations are described.
Date: December 19, 2005
Creator: Krass, A.W.
Object Type: Report
System: The UNT Digital Library
High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying (open access)

High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. …
Date: December 19, 2005
Creator: Lowenstein, Andrew
Object Type: Report
System: The UNT Digital Library
Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection (open access)

Mesoporous Silica Nanomaterials for Applications in Catalysis, Sensing, Drug Delivery and Gene Transfection

The central theme of this dissertation is represented by the versatility of mesoporous silica nanomaterials in various applications such as catalysis and bio-applications, with main focus on biological applications of Mesoporous Silica Nanospheres (MSN). The metamorphosis that we impose to these materials from catalysis to sensing and to drug and gene delivery is detailed in this dissertation. First, we developed a synthetic method that can fine tune the amount of chemically accessible organic functional groups on the pores surface of MSN by exploiting electrostatic and size matching between the cationic alkylammonium head group of the cetyltrimethylammonium bromide (CTAB) surfactant and various anionic organoalkoxysilane precursors at the micelle-water interface in a base-catalyzed condensation reaction of silicate. Aiming nature imitation, we demonstrated the catalytic abilities of the MSNs, We utilized an ethylenediamine functional group for chelating Cu{sup 2+} as a catalytic functional group anchored inside the mesopores. Thus, a polyalkynylene-based conducting polymer (molecular wire) was synthesized within the Cu-functionalized MSNs silica catalyst. For sensing applications, we have synthesized a poly(lactic acid) coated mesoporous silica nanosphere (PLA-MSN) material that serves as a fluorescence sensor system for detection of amino-containing neurotransmitters in neutral aqueous buffer. We exploited the mesoporosity of MSNs for encapsulating pharmaceutical …
Date: December 19, 2005
Creator: Radu, Daniela Rodica
Object Type: Thesis or Dissertation
System: The UNT Digital Library
New Attractors and Area Codes (open access)

New Attractors and Area Codes

In this note we give multiple examples of the recently proposed New Attractors describing supersymmetric flux vacua and non-supersymmetric extremal black holes in IIB string theory. Examples of non-supersymmetric extremal black hole attractors arise on a hypersurface in WP{sub 1,1,1,1,2}{sup 4}. For flux vacua on the orientifold of the same hypersurface existence of multiple basins of attraction is established. It is explained that certain fluxes may give rise to multiple supersymmetric flux vacua in a finite region on moduli space, say at the Landau-Ginzburg point and close to conifold point. This suggests the existence of multiple basins for flux vacua and domain walls in the landscape for a fixed flux and at interior points in moduli space.
Date: December 19, 2005
Creator: Giryavets, Alexander
Object Type: Article
System: The UNT Digital Library
Opportunities for Biorenewables in Oil Refineries (open access)

Opportunities for Biorenewables in Oil Refineries

Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.
Date: December 19, 2005
Creator: Marker, T. L.
Object Type: Report
System: The UNT Digital Library
A Performance Comparison of Tree and Ring Topologies in Distributed System (open access)

A Performance Comparison of Tree and Ring Topologies in Distributed System

A distributed system is a collection of computers that are connected via a communication network. Distributed systems have become commonplace due to the wide availability of low-cost, high performance computers and network devices. However, the management infrastructure often does not scale well when distributed systems get very large. Some of the considerations in building a distributed system are the choice of the network topology and the method used to construct the distributed system so as to optimize the scalability and reliability of the system, lower the cost of linking nodes together and minimize the message delay in transmission, and simplify system resource management. We have developed a new distributed management system that is able to handle the dynamic increase of system size, detect and recover the unexpected failure of system services, and manage system resources. The topologies used in the system are the tree-structured network and the ring-structured network. This thesis presents the research background, system components, design, implementation, experiment results and the conclusions of our work. The thesis is organized as follows: the research background is presented in chapter 1. Chapter 2 describes the system components, including the different node types and different connection types used in the system. …
Date: December 19, 2005
Creator: Huang, Min
Object Type: Thesis or Dissertation
System: The UNT Digital Library
The Physics Analysis of a Gas Attenuator with Argon as a Working Gas (open access)

The Physics Analysis of a Gas Attenuator with Argon as a Working Gas

A gas attenuator is an important element of the LCLS facility. The attenuator has to operate in a broad range of x-ray energies, provide attenuation coefficient between 1 and 10{sup 4} with the accuracy of 1% and, at the same time, be reliable and allow for many months of un-interrupted operation. A detailed design study of the attenuator based on the use of nitrogen as a working gas has been recently carried out by S. Shen et al [1]. In this note we assess the features of the attenuator based on the use of argon. We concentrate on the physics issues; the design features will probably be not that different from the aforementioned nitrogen attenuator. Although specific results obtained in our note pertain to argon, the general framework (and many equations obtained) are applicable also to the nitrogen attenuator. In the past, an analysis of the attenuator based on the use of a noble gas has already been carried out [2]. This analysis was performed for an extremely stringent set of specifications. In particular, a very large diameter for the unobstructed x-ray beam was set (1 cm) to accommodate the spontaneous radiation; the attenuator was supposed to cover the whole …
Date: December 19, 2005
Creator: Ryutov, D. D.; Bionta, R. M.; McKernan, M. A.; Shen, S. & Trent, J. W.
Object Type: Report
System: The UNT Digital Library
Polymer OLED White Light Development Program (open access)

Polymer OLED White Light Development Program

OSRAM Opto Semiconductors (OSRAM) successfully completed development, fabrication and characterization of the large area, polymer based white light OLED prototype at their OLED Research and Development (R&D) facility in San Jose, CA. The program, funded by the Department of Energy (DOE), consisted of three key objectives: (1) Develop new polymer materials and device architectures--in order to improve the performance of organic light emitters. (2) Develop processing techniques--in order to demonstrate and enable the manufacturing of large area, white light and color tunable, solid state light sources. (3) Develop new electronics and driving schemes for organic light sources, including color-tunable light sources. The key performance goals are listed. A world record efficiency of 25 lm/W was established for the solution processed white organic device from the significant improvements made during the project. However, the challenges to transfer this technology from an R&D level to a large tile format such as, the robustness of the device and the coating uniformity of large area panels, remain. In this regard, the purity and the blend nature of the materials are two factors that need to be addressed in future work. During the first year, OSRAM's Materials and Device group (M&D) worked closely with the …
Date: December 19, 2005
Creator: Antoniadis, Homer; Choong, Vi-En; Choulis, Stelios; Cumpston, Brian; Gupta, Rahul; Mathai, Mathew et al.
Object Type: Report
System: The UNT Digital Library
QUANTITATIVE ANALYSES OF THE SEVERITY OF ATTACK ON CREVICE CORROSION SURFACES (open access)

QUANTITATIVE ANALYSES OF THE SEVERITY OF ATTACK ON CREVICE CORROSION SURFACES

None
Date: December 19, 2005
Creator: /a, n
Object Type: Article
System: The UNT Digital Library
Reduced-Temperature Transient-Liquid-Phase Bonding of AluminaUsing a Ag-Cu-Based Brazing Alloy (open access)

Reduced-Temperature Transient-Liquid-Phase Bonding of AluminaUsing a Ag-Cu-Based Brazing Alloy

The mechanical properties and microstructural evolution ofmetal-ceramic bonds produced using a transient liquid phase (TLP) aredescribed. Alumina (Al2O3) was joined at 500 degrees C, 600 degrees C,and 700 degrees C using a multilayer In/Cusil-ABA (R) (commercialcopper-silver eutectic brazing alloy)/In interlayer. The introduction ofthin In cladding layers allows the system to bond at much lowertemperatures than those typically used for brazing with Cusil-ABA (R),thereby protecting temperature-sensitive components. After chemicalhomogenization, the interlayers retain an operating temperature rangesimilar to that of the brazed joints. TLP bonds made at 500 degrees C,600 degrees C, and 700 degrees C with holding times ranging from as lowas 1.5 h to 24 h had average fracture strengths above 220 MPa. Theeffects of bonding temperature and time on fracture strength aredescribed. Preliminary analysis of the interlayers shows that the Ag-Inor Cu-In intermetallic phases do not form. Considerations unique tosystems with two-phase core layers are discussed. Experiments usingsingle-crystal sapphire indicate rapid formation of a reaction layer at700 degrees C, suggesting the possibility of making strong bonds usinglower temperatures and/or shorter processing times.
Date: December 19, 2005
Creator: Hong, Sung Moo & Glaeser, Andreas M.
Object Type: Article
System: The UNT Digital Library
Rf Gun with High-Current Density Field Emission Cathode (open access)

Rf Gun with High-Current Density Field Emission Cathode

High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes
Date: December 19, 2005
Creator: Hirshfield, Jay L.
Object Type: Report
System: The UNT Digital Library
Search for the Rare Quark-annihilation Decays B->Ds(*)Phi (open access)

Search for the Rare Quark-annihilation Decays B->Ds(*)Phi

We report on searches for B{sup -} {yields} D{sub s}{sup -} {phi} and B{sup -} {yields} D*{sub s}{sup -} {phi}. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and {bar u} quarks in the B{sup -} meson. Our results are based on 234 million {Upsilon}(4S) {yields} B{bar B} decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions {Beta}(B{sup -} {yields} D{sub s}{sup -}{phi}) < 1.9 x 10{sup -6} and {Beta}(B{sup -} {yields} D*{sub s}{sup -} {phi}) < 1.2 x 10{sup -5}. These results are consistent with Standard Model expectations.
Date: December 19, 2005
Creator: Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J. P. et al.
Object Type: Article
System: The UNT Digital Library
Secondary neutron-production cross sections from heavy-ioninteractions in composite targets. (open access)

Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.
Date: December 19, 2005
Creator: Heilbronn, L.; Iwata, Y.; Iwase,H.; Murakami, T.; Sato, H.; Nakamura, T. et al.
Object Type: Article
System: The UNT Digital Library
Spinodal Ordering and Precipitation in U-6 wt% Nb (open access)

Spinodal Ordering and Precipitation in U-6 wt% Nb

A combinative approach of microhardness testing, tensile testing, and TEM microstructural analysis was employed to study the microstructure and mechanical instability of a water-quenched U-6wt.% Nb (WQU6Nb) alloy subjected to different aging schedules including artificial aging at 200 C, 15-year natural aging at ambient temperatures, and 15-year natural aging followed by accelerative aging at 200 C. The changes in mechanical property during and after the aging processes were examined using microhardness and tensile-testing methods. During the early stages of artificial aging at 200 C, the microhardness of WQ-U6Nb alloy increased, i.e., age hardening, as a result of the development of nanoscale modulation caused by spinodal decomposition. Coarsening of the modulated structure occurred after a prolonged aging at 200 C for 16 hours, and it led to a decrease of microhardness, i.e., age softening. Phase instability was also found to occur in WQ-U6Nb alloy that was subjected to a 15-year natural aging at ambient temperatures. The formation of partially ordered domains resulting from a spinodal modulation with an atomic-scale wavelength rendered the appearance of swirl-shape antiphase domain boundaries (APBs) observed in TEM images. Although it did not cause a significant change in microhardness, 15-year natural aging has dramatically affected the aging …
Date: December 19, 2005
Creator: Hsiung, L & Zhou, J
Object Type: Article
System: The UNT Digital Library
Adaptive Perturbation Theory I: Quantum Mechanics (open access)

Adaptive Perturbation Theory I: Quantum Mechanics

Adaptive perturbation is a new method for perturbatively computing the eigenvalues and eigenstates of quantum mechanical Hamiltonians that heretofore were not believed to be treatable by such methods. The novel feature of adaptive perturbation theory is that it decomposes a given Hamiltonian, H, into an unperturbed part and a perturbation in a way which extracts the leading non-perturbative behavior of the problem exactly. This paper introduces the method in the context of the pure anharmonic oscillator and then goes on to apply it to the case of tunneling between both symmetric and asymmetric minima. It concludes with an introduction to the extension of these methods to the discussion of a quantum field theory. A more complete discussion of this issue will be given in the second paper in this series, and it will show how to use the method of adaptive perturbation theory to non-perturbatively extract the structure of mass, wavefunction and coupling constant renormalization.
Date: October 19, 2005
Creator: Weinstein, Marvin
Object Type: Report
System: The UNT Digital Library
Adaptive Perturbation Theory: Quantum Mechanics and Field Theory (open access)

Adaptive Perturbation Theory: Quantum Mechanics and Field Theory

Adaptive perturbation is a new method for perturbatively computing the eigenvalues and eigenstates of quantum mechanical Hamiltonians that are widely believed not to be solvable by such methods. The novel feature of adaptive perturbation theory is that it decomposes a given Hamiltonian, H, into an unperturbed part and a perturbation in a way which extracts the leading non-perturbative behavior of the problem exactly. In this talk I will introduce the method in the context of the pure anharmonic oscillator and then apply it to the case of tunneling between symmetric minima. After that, I will show how this method can be applied to field theory. In that discussion I will show how one can non-perturbatively extract the structure of mass, wavefunction and coupling constant renormalization.
Date: October 19, 2005
Creator: Weinstein, Marvin
Object Type: Article
System: The UNT Digital Library
Alpha Channeling in Mirror Machines (open access)

Alpha Channeling in Mirror Machines

Because of their engineering simplicity, high-β, and steady-state operation, mirror machines and related open-trap machines such as gas dynamic traps, are an attractive concept for achieving controlled nuclear fusion. In these open-trap machines, the confinement occurs by means of magnetic mirroring, without the magnetic field lines closing upon themselves within the region of particle confinement. Unfortunately, these concepts have not achieved to date very spectacular laboratory results, and their reactor prospects are dimmed by the prospect of a low Q-factor, the ratio of fusion power produced to auxiliary power. Nonetheless, because of its engineering promise, over the years numerous improvements have been proposed to enhance the reactor prospects of mirror fusion, such as tandem designs, end-plugging, and electric potential barriers.
Date: October 19, 2005
Creator: Fisch, N. J.
Object Type: Report
System: The UNT Digital Library