Determining the Emissivity of Roofing Samples: Asphalt, Ceramic and Coated Cedar (open access)

Determining the Emissivity of Roofing Samples: Asphalt, Ceramic and Coated Cedar

The goal is to perform heat measurements examine of selected roofing material samples. Those roofing materials are asphalt shingles, ceramics, and cedar. It’s important to understand the concept of heat transfer, which consists of conduction, convection, and radiation. Research work was reviewed on different infrared devices to see which one would be suitable for conducting my experiment. In this experiment, the main focus was on a specific property of radiation. That property is the emissivity, which is the amount of heat a material is able to radiate compared to a blackbody. An infrared measuring device, such as the infrared camera was used to determine the emissivity of each sample by using a measurement formula consisting of certain equations. These equations account for the emissivity, transmittance of heat through the atmosphere and temperatures of the samples, atmosphere and background. The experiment verifies how reasonable the data is compared to values in the emissivity table. A blackbody method such as electrical black tape was applied to help generate the correct data. With this data obtained, the emissivity was examined to understand what factors and parameters affect this property of the materials. This experiment was conducted using a suitable heat source to heat …
Date: December 2015
Creator: Adesanya, Oludamilola
System: The UNT Digital Library
Processing, Structure and Tribological Property Relations of Ternary Zn-Ti-O and Quaternary Zn-Ti-Zr-O Nanocrystalline Coatings (open access)

Processing, Structure and Tribological Property Relations of Ternary Zn-Ti-O and Quaternary Zn-Ti-Zr-O Nanocrystalline Coatings

Conventional liquid lubricants are faced with limitations under extreme cyclic operating conditions, such as in applications that require lubrication when changing from atmospheric pressure to ultrahigh vacuum and ambient air to dry nitrogen (e.g., satellite components), and room to elevated (>500°C) temperatures (e.g., aerospace bearings). Alternatively, solid lubricant coatings can be used in conditions where synthetic liquid lubricants and greases are not applicable; however, individual solid lubricant phases usually perform best only for a limited range of operating conditions. Therefore, solid lubricants that can adequately perform over a wider range of environmental conditions are needed, especially during thermal cycling with temperatures exceeding 500°C. One potential material class investigated in this dissertation is lubricious oxides, because unlike other solid lubricant coatings they are typically thermodynamically stable in air and at elevated temperatures. While past studies have been focused on binary metal oxide coatings, such as ZnO, there have been very few ternary oxide and no reported quaternary oxide investigations. The premise behind the addition of the third and fourth refractory metals Ti and Zr is to increase the number of hard and wear resistant phases while maintaining solid lubrication with ZnO. Therefore, the major focus of this dissertation is to investigate …
Date: August 2014
Creator: Ageh, Victor
System: The UNT Digital Library

Thermodynamics, Kinetics and Mechanical Behavior of Model Metallic Glasses

The thermophysical properties and deformation behavior of a systematic series of model metallic glasses was investigated. For Zr-based metallic glasses with all metallic constituents, the activation energy of glass transition was determined to be in the range of 74-173 kJ/mol while the activation energy of crystallization was in the range of 155-170 kJ/mol. The reduced glass transition temperature was roughly the same for all the alloys (~ 0.6) while the supercooled liquid region was in the range of 100-150 K, indicating varying degree of thermal stability. In contrast, the metal-metalloid systems (such as Ni-Pd-P-B) showed relatively higher activation energy of crystallization from short range ordering in the form of triagonal prism clusters with strongly bonded metal-metalloid atomic pairs. Deformation mechanisms of all the alloys were investigated by uniaxial compression tests, strain rate sensitivity (SRS) measurements, and detailed characterization of the fracture surface morphology. For the metal-metal systems, plasticity was found to be directly correlated with shear transformation zone (STZ) size, with systems of larger STZ size showing better plasticity. In metal-metalloid amorphous alloys, plasticity was limited by the distribution of STZ units, with lower activation energy leading to more STZ units and better plasticity. The alloys with relatively higher plasticity …
Date: December 2023
Creator: Akhtar, Mst Alpona
System: The UNT Digital Library
Tribocatalytically-Active Coatings for Enhanced Tribological Performance and Carbon-Based Tribofilm Formation (open access)

Tribocatalytically-Active Coatings for Enhanced Tribological Performance and Carbon-Based Tribofilm Formation

In this study, we investigate the fundamental mechanisms defining the approach for addressing tribological challenges in mechanical systems via the use of the tribocatalytically active coating. The coating is designed using an electrodeposition process and consists of a hard amorphous cobalt-phosphorous matrix with the incorporation of tribocatalytically-active nickel and copper. Our focus is on understanding the effect of the tribocatalytic elements, Cu vs Ni, on the coating's performance in high-contact stress conditions, generating local heating, shear, and compression. By optimizing the relative composition and mechanical characteristics of the coating, we aim to enhance its tribological performance in the presence of a hydrocarbon environment. Through extensive characterization of the wear tracks using SEM/EDS and Raman analyses, we identify the formation of a protective carbon-based tribofilm on the coating's surface during sliding as the key factor behind its excellent performance. Our findings not only contribute to the understanding of material transformations in the contact but also offer a robust and versatile approach to addressing tribological challenges in mechanical systems. The development of this innovative coating opens up new possibilities for promoting the formation of protective tribofilms and improving the performance of mechanical components operating in low-viscosity fuels and synthetic oils.
Date: July 2023
Creator: Al Sulaimi, Rawan
System: The UNT Digital Library

Investigation of the Processing-Induced Transition from Shape Memory to Strain Glass of Ni-Ti and Fe-Mn-Al-Cr-Ni Alloys

In this study, we observed the effects of the processing-induced method on two different shape memory alloys (SMAs). First, we compare the transformation behavior of a martensitic NiTi SMA during thermal cycling using wide angle synchrotron radiation X-ray diffraction (WAXS). Based on the thermal cycling results, three observations about processing-induced SGAs as compared to SMAs can be seen: (1) retention of distorted austenite at high and low temperatures, (2) broadening of diffraction peaks in WAXS and disappearance of the thermal peaks in DSC measurements both due to induced strain, and (3) gradual increase in the amount of the martensitic phase. Second, we applied a processing-induced method to a FeMnAlCrNi alloy to examine the possibility of forming a strain glass alloy in an Fe-based system through sufficient dislocation formation via plastic deformation. This alloy was subjected to various percentages of cold work and characterized using scanning electron microscopy, differential scanning calorimetry, Vickers hardness, WAXS data. The results indicate with 50% thickness reduction, stress-free thermal cycling no longer exhibits a measurable phase transformation, suggesting the successful formation of strain glass alloy through sufficient dislocation. The results of this research contribute significantly to the advancement of strain glass alloys (SGAs), especially with respect …
Date: December 2022
Creator: Ashmore, Bailey Nicole
System: The UNT Digital Library
Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System (open access)

Laser Deposition, Heat-treatment, and Characterization of the Binary Ti-xmn System

The present research seeks to characterization of an additively manufactured and heat-treated Ti-xMn gradient alloy, a binary system that has largely been unexplored. In order to rapidly assess this binary system, compositionally graded Ti-xMn (0<x<15 wt%) specimens were fabricated using the LENS (Laser Engineered Net Shaping) and were subsequently heat-treated and characterized using a wide range of techniques. Microstructural changes with respect to the change in thermal treatments, hardness and chemical composition were observed and will be presented. These include assessments of both continuous cooling, leading to observations of both equilibrium and metastable phases, including the titanium martensites, and to direct aging studies looking for composition regimes that produce highly refined alpha precipitates – a subject of great interest given recent understandings of non-classical nucleation and growth mechanisms. The samples were characterized using SEM, EDS, TEM, and XRD and the properties probed using a Vickers Microhardness tester.
Date: August 2013
Creator: Avasarala, Chandana
System: The UNT Digital Library
Surface Degradation Behavior of Bulk Metallic Glasses and High Entropy Alloys (open access)

Surface Degradation Behavior of Bulk Metallic Glasses and High Entropy Alloys

In this study, the surface degradation behavior was studied for typical examples from bulk metallic glasses (BMGs), metallic glass composites (MGCs) and high entropy alloys (HEAs) alloy systems that are of scientific and commercial interest. The corrosion and wear behavior of two Zr-based bulk metallic glasses, Zr41.2Cu12.5Ni10Ti13.8Be22.5 and Zr57Cu15.4Ni12.6Al10Nb5, were evaluated in as-cast and thermally relaxed states. Significant improvement in corrosion rate, wear behavior, and friction coefficient was seen for both the alloys after thermal relaxation. Fully amorphous structure was retained with thermal relaxation below the glass transition temperature. This improvement in surface properties was explained by annihilation of free volume, the atomic scale defects in amorphous metals resulting from kinetic freezing. Recently developed MGCs, with in situ crystalline ductile phase, demonstrate a combination of mechanical properties and fracture behavior unseen in known structural metals. The composites showed higher wear rates but lower coefficient of friction compared to monolithic amorphous glasses. No tribolayer formation was seen for the composites in sharp contrast to that of the monolithic metallic glasses. Corrosion was evaluated by open circuit potential (OCP) analysis and potentiodynamic polarization. Site-specific corrosion behavior was studied by scanning vibration electrode technique (SVET) to identify formation of galvanic couples. Scanning kelvin …
Date: December 2017
Creator: Ayyagari, Venkata A
System: The UNT Digital Library
Effect of Alloy Composition, Free Volume and Glass Formability on the Corrosion Behavior of Bulk Metallic Glasses (open access)

Effect of Alloy Composition, Free Volume and Glass Formability on the Corrosion Behavior of Bulk Metallic Glasses

Bulk metallic glasses (BMGs) have received significant research interest due to their completely amorphous structure which results in unique structural and functional properties. Absence of grain boundaries and secondary phases in BMGs results in high corrosion resistance in many different environments. Understanding and tailoring the corrosion behavior can be significant for various structural applications in bulk form as well as coatings. In this study, the corrosion behavior of several Zr-based and Fe-Co based BMGs was evaluated to understand the effect of chemistry as well as quenched in free volume on corrosion behavior and mechanisms. Presence of Nb in Zr-based alloys was found to significantly improve corrosion resistance due to the formation of a stable passive oxide. Relaxed glasses showed lower rates compared to the as-cast alloys. This was attributed to lowering of chemical potential from the reduced fraction of free volume. Potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) techniques helped in quantifying the corrosion rate and polarization resistance. The effect of alloy composition was quantified by extensive surface analysis using Raman spectroscopy, energy dispersive x-ray spectroscopy and auger spectroscopy. Pitting intensity was higher in the as-cast glasses than the relaxed glasses. The electrochemical behavior of a Zr-Ti-Cu-Ni-Be bulk metallic glass …
Date: December 2015
Creator: Ayyagari, Venkata Aditya
System: The UNT Digital Library
Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors (open access)

Corrosion Protection of Aerospace Grade Magnesium Alloy Elektron 43™ for Use in Aircraft Cabin Interiors

Magnesium alloys exhibit desirable properties for use in transportation technology. In particular, the low density and high specific strength of these alloys is of interest to the aerospace community. However, the concerns of flammability and susceptibility to corrosion have limited the use of magnesium alloys within the aircraft cabin. This work studies a magnesium alloy containing rare earth elements designed to increase resistance to ignition while lowering rate of corrosion. The microstructure of the alloy was documented using scanning electron microscopy. Specimens underwent salt spray testing and the corrosion products were examined using energy dispersive spectroscopy.
Date: August 2013
Creator: Baillio, Sarah S.
System: The UNT Digital Library

Investigation of Porous Ceramic Structure by Freeze-Casting

The design and fabrication of porous ceramic materials with anisotropic properties has, in recent years, gained popularity due to their potential application in various areas that include medical, energy, defense, space, and aerospace. Freeze-casting is an effective, low-cost, and safe method as a wet shaping technique to create these structures. To control the morphology of these materials, many critical factors were found to play an important role. In this dissertation, the processing parameters of the magnetic field-assisted freeze-casting method were optimized with a focus on comparing the structure obtained using vertical and horizontal magnetic fields and understanding the mechanisms that occur under different freezing modes. More specifically, this processing method was used to produce Al2O3 and B4C porous ceramics materials with unidirectionally-aligned pore channels. The effect of the vertical and horizontal magnetic field strength and direction, concentration of magnetic material (Fe3O4), cooling rate, and freezing time were examined. The resulting ceramics with highly aligned pore channels were infiltrated with molten metal to create metal matrix composites. The mechanical properties of these structures were measured and were subsequently correlated to their morphology and composition.
Date: May 2021
Creator: Bakkar, Said Adnan
System: The UNT Digital Library
High Temperature Water as an Etch and Clean for SiO2 and Si3N4 (open access)

High Temperature Water as an Etch and Clean for SiO2 and Si3N4

An environmentally friendly, and contamination free process for etching and cleaning semiconductors is critical to future of the IC industry. Under the right conditions, water has the ability to meet these requirements. Water becomes more reactive as a function of temperature in part because the number of hydronium and hydroxyl ions increase. As water approaches its boiling point, the concentration of these species increases over seven times their concentrations at room temperature. At 150 °C, when the liquid state is maintained, these concentrations increase 15 times over room temperature. Due to its enhanced reactivity, high temperature water (HTW) has been studied as an etch and clean of thermally grown SiO2, Si3N4, and low-k films. High temperature deuterium oxide (HT-D2O) behaves similarly to HTW; however, it dissociates an order of magnitude less than HTW resulting in an equivalent reduction in reactive species. This allowed for the effects of reactive specie concentration on etch rate to be studied, providing valuable insight into how HTW compares to other high temperature wet etching processes such as hot phosphoric acid (HPA). Characterization was conducted using Fourier transform infrared spectroscopy (FTIR) to determine chemical changes due to etching, spectroscopic ellipsometry to determine film thickness, profilometry to …
Date: December 2018
Creator: Barclay, Joshua David
System: The UNT Digital Library
A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S (open access)

A Study of Mechanisms to Engineer Fine Scale Alpha Phase Precipitation in Beta Titanium Alloy, Beta 21S

Metastable b-Ti alloys are titanium alloys with sufficient b stabilizer alloying additions such that it's possible to retain single b phase at room temperature. These alloys are of great advantage compared to a/b alloys since they are easily cold rolled, strip produced and can attain excellent mechanical properties upon age hardening. Beta 21S, a relatively new b titanium alloy in addition to these general advantages is known to possess excellent oxidation and corrosion resistance at elevated temperatures. A homogeneous distribution of fine sized a precipitates in the parent b matrix is known to provide good combination of strength, ductility and fracture toughness. The current work focuses on a study of different mechanisms to engineer homogeneously distributed fine sized a precipitates in the b matrix. The precipitation of metastable phases upon low temperature aging and their influence on a precipitation is studied in detail. The precipitation sequence on direct aging above the w solvus temperature is also assessed. The structural and compositional evolution of precipitate phase is determined using multiple characterization tools. The possibility of occurrence of other non-classical precipitation mechanisms that do not require heterogeneous nucleation sites are also analyzed. Lastly, the influence of interstitial element, oxygen on a precipitation …
Date: August 2013
Creator: Behera, Amit Kishan
System: The UNT Digital Library

Advanced Cathodes for High Energy Density Lithium Sulfur Battery

A systematic development of 2D alloy catalyst with synergistic performance of high lithium polysulfide (LiPS) binding energy and efficient Li+ ion/electron conduction is presented. The first section of work found that Li+ ions can flow through the percolated ion transport pathway in polycrystalline MoS2, while Na+ and K+ ions can easily flow through the percolated 1D ion channel near the grain boundaries. An unusually high ionic conductivity of extrinsic Li+, Na+, and K+ ions in 2D MoS2 film exceeding 1 S/cm was measured that is more than two orders of magnitude higher than those of conventional solid ionic materials, including 2D ionic materials. The second section of this dissertation focus on catalyzing the transformation of LiPSs to prevent the shuttle effect during the battery cycling by synthesizing 2H (semiconducting) – 1T (metallic) mixed phase 2D Mo0.5W0.5S2 alloy on CNF paper, using two step sputtering and sulfurization method. The lithium sulfur (Li-S) battery cell assembled with the 2D Mo0.5W0.5S2/CNF/S cathode shows a high specific capacity of 1228 mAh g-1 at 0.1C and much higher cyclic stability over 4 times as compared to the pristine cathodes. The high LiPSs binding energy of catalyst efficiently prevents the shuttling effect and corrosion of Li …
Date: December 2021
Creator: Bhoyate, Sanket
System: The UNT Digital Library
Nanohybrids Based on Solid and Foam Polyurethanes (open access)

Nanohybrids Based on Solid and Foam Polyurethanes

Polymer nanocomposites are a going part of Materials Science and Engineering. These new composite materials exhibit dimensional and thermal stability of inorganic materials and toughness and dielectric properties of polymers. Development of nanocomposites become an important approach to create high-performance composite materials. In this study silica, fly ash, silica nanotubes and carbon black particles have been added to modify polyurethane foam and thermoplastic polyurethanes. It has been found that the addition of silica can diminish the size of foam bubbles, resulting in an increased stiffness of the material, increase of the compressive strength, and greater resistance to deformation. However, the uniformity of bubbles is reduced, resulting in increased friction of the material. Fly ash added to the foam can make bubbles smaller and improve uniformity of cells. Therefore, the material stiffness and compressive strength, resistance to deformation, and has little impact on the dynamic friction of the material. Adding nanotubes make bubble size unequal, and the arrangement of the bubble uneven, resulting in decreased strength of the material, while the friction increases. After the addition of carbon black to the polyurethane foam, due to the special surface structure of the carbon black, the foam generates more bubbles during the foaming …
Date: May 2015
Creator: Bo, Chong
System: The UNT Digital Library
Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites (open access)

Processing and Characterization of Nickel-Carbon Base Metal Matrix Composites

Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) are attractive reinforcements for lightweight and high strength metal matrix composites due to their excellent mechanical and physical properties. The present work is an attempt towards investigating the effect of CNT and GNP reinforcements on the mechanical properties of nickel matrix composites. The CNT/Ni (dry milled) nanocomposites exhibiting a tensile yield strength of 350 MPa (about two times that of SPS processed monolithic nickel ~ 160 MPa) and an elongation to failure ~ 30%. In contrast, CNT/Ni (molecular level mixed) exhibited substantially higher tensile yield strength (~ 690 MPa) but limited ductility with an elongation to failure ~ 8%. The Ni-1vol%GNP (dry milled) nanocomposite exhibited the best balance of properties in terms of strength and ductility. The enhancement in the tensile strength (i.e. 370 MPa) and substantial ductility (~40%) of Ni-1vol%GNP nanocomposites was achieved due to the combined effects of grain refinement, homogeneous dispersion of GNPs in the nickel matrix, and well-bonded Ni-GNP interface, which effectively transfers stress across metal-GNP interface during tensile deformation. A second emphasis of this work was on the detailed 3D microstructural characterization of a new class of Ni-Ti-C based metal matrix composites, developed using the laser engineered net …
Date: May 2014
Creator: Borkar, Tushar Murlidhar
System: The UNT Digital Library

Development of a Novel Grease Resistant Functional Coatings for Paper-based Packaging and Assessment of Application by Flexographic Press

Access: Use of this item is restricted to the UNT Community
Recent commercial developments have created a need for alternative materials and methods for imparting oil/grease resistance to paper and/or paperboard used in packaging. The performance of a novel grease resistant functional coating comprised of polyvinyl alcohol (PVA), sodium tetraborate pentahydrate (borate) and acetonedicarboxylic acid (ACDA) and the application of said coating by means of flexographic press is presented herein. Application criteria is developed, testing procedures described, and performance assessment of the developed coating materials are made. SEM images along with contact angle data suggest that coating performance is probably attributable to decreased mean pore size in conjunction with a slightly increased surface contact angle facilitated by crosslinking of PVA molecules by both borate ions and ACDA.
Date: August 2004
Creator: Brown, Robert W.
System: The UNT Digital Library

The Effect of Processing Conditions on the Surface Morphology of Few-Layered WS2 Thin Films

Access: Use of this item is restricted to the UNT Community
Recent progress in layered transition metal dichalcogenides (TMDs) has led to various promising electronic and optoelectronic applications. However, the structure of materials plays a critical role in electronic and optoelectronic devices, and determines performance. Electronic and optoelectronic devices typically consist of multiple layers that form electrical homojunctions or heterojunctions. Therefore, in a device it can be expected that a WS2 layer may serve as the substrate for a subsequent layer in a multilayer device stack and determine how the layer grows. In transistor structures, roughness at the channel/gate dielectric interface introduces field variations and charge scattering. Therefore, understanding the relations between processing, surface morphology and properties is important. In this project, the effects of pulsed laser deposition (PLD) processing conditions on the surface morphology of few layered WS2 films were studied. WS2 films were synthesized under processing conditions that represent the extremes of surface supersaturation and kinetic energy transfer from the flux to the growing films, and evolution of the surface morphology was studied. The specific conditions were 1Hz/50mJ, 10Hz/50mJ, 1Hz/300mJ, and 10Hz/300mJ respectively. Combining AFM, XRD and Raman analyses, it was determined that deposition at 10Hz/300mJ, provided the best structural properties and surface morphology. Growth appeared to be 3D-cluster, …
Date: May 2019
Creator: Cai, Bimin
System: The UNT Digital Library

Synthesis and Characterization of Crystalline Assemblies of Functionalized Hydrogel Nanoparticles

Access: Use of this item is restricted to the UNT Community
Two series monodispersed nanoparticles of hydroxylpropyl cellulose (HPC) and functionalized poly-N-isopropylamide (PNIPAM) particles have been synthesized and used as building blocks for creating three-dimensional networks, with two levels of structural hierarchy. The first level is HPC nanoparticles were made from methacrylated or degradable cross-linker attached HPC. These nanoparticles could be stabilized at room temperature by residual methacrylate or degradable groups are present both within and on the exterior of HPC nanoparticles. Controlled release studies have been performed on the particle and networks .The nearly monodispersed nanoparticles have been synthesized on the basis of a natural polymer of hydropropylcellulose (HPC) with a high molecular weight using the precipitation polymerization method and self-assembly of these particles in water results in bright colors. The HPC nanoparticles can be potential using as crosslinkers to increase the hydrogels mechanical properties, such as high transparency and rapid swelling/de-swelling kinetics. The central idea is to prepare colloidal particles containing C=C bonds and to use them as monomers - vinylparticles, to form stable particle assemblies with various architectures. This is accomplished by mixing an aqueous suspension of hydrogel nanoparticles (PNIPAM-co-allylamine) with the organic solvent (dichloromethane) to grow columnar crystals. The hydrogels with such a unique crystal structure behavior …
Date: December 2005
Creator: Cai, Tong
System: The UNT Digital Library
Alloy Development and High-Energy X-Ray Diffraction Studies of NiTiZr and NiTiHf High Temperature Shape Memory Alloys (open access)

Alloy Development and High-Energy X-Ray Diffraction Studies of NiTiZr and NiTiHf High Temperature Shape Memory Alloys

NiTi-based shape memory alloys (SMAs) offer a good combination of high-strength, ductility, corrosion resistance, and biocompatibility that has served them well and attracted the attention of many researchers and industries. The alloys unique thermo-mechanical ability to recover their initial shape after relatively large deformations by heating or upon unloading due to a characteristic reversible phase transformation makes them useful as damping devices, solid state actuators, couplings, etc. However, there is a need to increase the temperature of the characteristic phase transformation above 150 °C, especially in the aerospace industry where high temperatures are often seen. Prior researchers have shown that adding ternary elements (Pt, Pd, Au, Hf and Zr) to NiTi can increase transformation temperatures but most of these additions are extremely expensive, creating a need to produce cost-effective high temperature shape memory alloys (HTSMAs). Thus, the main objective of this research is to examine the relatively unstudied NiTiZr system for the ability to produce a cost effective and formable HTSMA. Transformation temperatures, precipitation paths, processability, and high-temperature oxidation are examined, specifically using high energy X-ray Diffraction (XRD) measurements, in NiTi-20 at.% Zr. This is followed by an in situ XRD study of the phase growth kinetics of the favorable …
Date: May 2018
Creator: Carl, Matthew A
System: The UNT Digital Library

Carbon Nanotubes and Molybdenum Disulfide Protected Electrodes for High Performance Lithium-Sulfur Battery Applications

Access: Use of this item is restricted to the UNT Community
Lithium-sulfur (Li-S) batteries are faced with practical drawbacks of poor cycle life and low charge efficiency which hinder their advancements. Those drawbacks are primarily caused by the intrinsic issues of the cathodes (sulfur) and the anodes (Li metal). In attempt to resolve the issues found on the cathodes, this work discusses the method to prepare a binder-free three-dimensional carbon nanotubes-sulfur (3D CNTs-S) composite cathode by a facile and a scalable approach. Here, the 3D structure of CNTs serves as a conducting network to accommodate high loading amounts of active sulfur material. The efficient electron pathway and the short Li ions (Li+) diffusion length provided by the 3D CNTs offset the insulating properties of sulfur. As a result, high areal and specific capacities of 8.8 mAh cm−2 and 1068 mAh g−1, respectively, with the sulfur loading of 8.33 mg cm−2 are demonstrated; furthermore, the cells operated at a current density of 1.4 mA cm−2 (0.1 C) for up to 150 cycles. To address the issues existing on the anode part of Li-S batteries, this work also covers the novel approach to protect a Li metal anode with a thin layer of two-dimensional molybdenum disulfide (MoS2). With the protective layer of MoS2 …
Date: August 2019
Creator: Cha, Eunho
System: The UNT Digital Library
Laser Powder Bed Fusion of H13 Tool Steel: Experiments, Process Optimization and Microstructural Characterization (open access)

Laser Powder Bed Fusion of H13 Tool Steel: Experiments, Process Optimization and Microstructural Characterization

This work focused on laser powder bed fusion (LPBF) of H13 tool steel to examine microstructure and melt pool morphology. Experiments were conducted with varying laser power (P) in the range of 90-180 W and scan speed (v) in the range of 500-1000 mm/s. layer thickness (l) and hatch spacing (h) were kept constant. Volumetric energy density (γ) was calculated using the above process parameters. In order to find a relation between the recorded density and top surface roughness with changing process parameters, set of equations were derived using the non-dimensional analysis. For any chosen values of laser power, scan speed, hatch spacing and layer thickness, these equations help to predict top surface roughness and density of LPBF processed H13 tool steel. To confirm the universal relation for these equations, data of In718 and SS316L processed in LPBF was input which gave a R-square of >94% for top surface roughness and >99% for density. A closed box approach, response surface model, was also used to predict the density and surface roughness which allows only in the parametric range. Material microstructures were examined to identify the melting modes such as keyhole, transition and conduction modes. X-ray diffraction data revealed that there …
Date: May 2023
Creator: Channa Reddy, Sumanth Kumar Reddy
System: The UNT Digital Library

Topics in micro electromechanical systems: MEMS engineering and alternative materials for MEMS fabrication.

Access: Use of this item is restricted to the UNT Community
This paper deals with various topics in micro electromechanical systems (MEMS) technology beginning with microactuation, MEMS processing, and MEMS design engineering. The fabrication and testing of three separate MEMS devices are described. The first two devices are a linear stepping motor and a continuous rotary motor, respectively; and were designed for the purpose of investigating the frictional and wear properties of silicon components. The third device is a bi-stable microrelay, in which electrical current conducts through a secondary circuit, via a novel probe-interconnect mechanism. The second half focuses on engineering a carbon nanotube / SU-8 photoepoxy nanocomposite for fabricating MEMS devices. A processing method for this material as well as the initial results of characterization, are discussed.
Date: August 2004
Creator: Chapla, Kevin
System: The UNT Digital Library
First Principles Calculations of the Site Substitution Behavior in Gamma Prime Phase in Nickel Based Superalloys (open access)

First Principles Calculations of the Site Substitution Behavior in Gamma Prime Phase in Nickel Based Superalloys

Nickel based superalloys have superior high temperature mechanical strength, corrosion and creep resistance in harsh environments and found applications in the hot sections as turbine blades and turbine discs in jet engines and gas generator turbines in the aerospace and energy industries. The efficiency of these turbine engines depends on the turbine inlet temperature, which is determined by the high temperature strength and behavior of these superalloys. The microstructure of nickel based superalloys usually contains coherently precipitated gamma prime (?) Ni3Al phase within the random solid solution of the gamma () matrix, with the ? phase being the strengthening phase of the superalloys. How the alloying elements partition into the and ? phases and especially in the site occupancy behaviors in the strengthening ? phases play a critical role in their high temperature mechanical behaviors. The goal of this dissertation is to study the site substitution behavior of the major alloying elements including Cr, Co and Ti through first principles based calculations. Site substitution energies have been calculated using the anti-site formation, the standard defect formation formalism, and the vacancy formation based formalism. Elements such as Cr and Ti were found to show strong preference for Al sublattice, whereas Co …
Date: August 2012
Creator: Chaudhari, Mrunalkumar
System: The UNT Digital Library
Surface Chemistry and Work Function of Irradiated and Nanoscale Thin Films Covered Indium Tin Oxides (open access)

Surface Chemistry and Work Function of Irradiated and Nanoscale Thin Films Covered Indium Tin Oxides

In this study, we used UV-ozone Ar sputtering, X-ray photoelectron and ultra-violet photoelectron spectroscopies and sputtering based depositions of RuO2 and Se nano-layers on indium tin oxides (ITOs). We elucidated the effect of Ar sputtering on the composition and chemistry of Sn rich ITO surface. We demonstrated that while a combination of UV-ozone radiation and Ar sputtering removes most of the hydrocarbons responsible for degrading the work function of ITO, it also removes significant amount of the segregated SN at the ITO surface that's responsible for its reasonable work function of 4.7eV. We also demonstrated for the first time that sputtering cleaning ITO surface leads to the reduction of the charge state of Sn from Sn4+ to Sn2+ that adds to the degradation of the work function. For the nano-layers coverage of ITO studies, we evaluated both RuO2 and Se. For RuO2 coated ITO, XPS showed the formation of a Ru-Sn-O ternary oxide. The RuO2 nano-layer reduced the oxidation state of Sn in the Sn-rich surface of ITO from +4 to +2. The best work function obtained for this system is 4.98eV, raising the effective work function of ITO by more than 0.5 eV. For the Se coated ITO studies, …
Date: May 2018
Creator: Che, Hui
System: The UNT Digital Library