54 Matching Results

Results open in a new window/tab.

Neural Network Classifiers for Object Detection in Optical and Infrared Images (open access)

Neural Network Classifiers for Object Detection in Optical and Infrared Images

This thesis presents a series of neural network classifiers for object detection in both optical and infrared images. The focus of this work is on efficient and accurate solutions. The thesis discusses the evolution of the highly efficient and tiny network Binary Classification Vision Transformer (BC-ViT) and how through thoughtful modifications and improvements, the BC-ViT can be utilized for tasks of increasing complexity. Chapter 2 discusses the creation of BC-ViT and its initial use case for underwater image classification of optical images. The BC-ViT is able to complete its task with an accuracy of 99.29\% while being comprised of a mere 15,981 total trainable parameters. Chapter 3, Waste Multi-Class Vision Transformer (WMC-ViT), introduces the usefulness of mindful algorithm design for the realm of multi-class classification on a mutually exclusive dataset. WMC-ViT shows that the task oriented design strategy allowed for a network to achieve an accuracy score of 94.27\% on a five class problem while still maintaining a tiny parameter count of 35,492. The final chapter demonstrates that by utilizing functional blocks of BC-ViT, a simple and effective target detection algorithm for infrared images can be created. The Edge Infrared Vision Transformer (EIR-ViT) showed admirable results with a high IoU …
Date: December 2023
Creator: Adams, Ethan Richard
System: The UNT Digital Library
Conditional Disclosure of Secrets and Storage over Graphs (open access)

Conditional Disclosure of Secrets and Storage over Graphs

In the era of big data, it is essential to implement practical security and privacy measures to ensure the lawful use of data and provide users with trust and assurance. In the dissertation, I address this issue through several key steps. Firstly, I delve into the problem of conditional secret disclosure, representing it using graphs to determine the most efficient approach for storing and disclosing secrets. Secondly, I extend the conditional disclosure of secrets problem from a single secret to multiple secrets and from a bipartite graph to an arbitrary graph. Thirdly, I remove security constraints to observe how they affect the efficiency of storage and recovery. In our final paper, I explore the secure summation problem, aiming to determine the capacity of total noise. Throughout the dissertation, I leverage information-theoretic tools to address security and privacy concerns.
Date: December 2023
Creator: Li, Zhou
System: The UNT Digital Library
Distributed Source Coding with LDPC Codes: Algorithms and Applications (open access)

Distributed Source Coding with LDPC Codes: Algorithms and Applications

The syndrome source coding for lossless data compression with side information based on fixed-length linear block codes is the main emphasis of this work. We demonstrate that the source entropy rate can be achieved for syndrome source coding with side information when the sources are correlated. Next, we examine employing LDPC codes to apply the channel and syndrome concepts in order to satisfy the Slepian Wolf limit. Our findings indicate that irregular codes perform significantly better when the compression ratio is larger. Additionally, we looked at how well different applications performed when running on two different mobile networks. We have tested those applications which are used in our day-to-day life. Our main focus is to make wireless communication much easier. We know that nowadays data is increasing which led to increase in the transfer of data. There are a lot of errors while doing so like channel error, bit error rate, jitter, etc. To overcome such kind of problems compression and decompression should be done effectively without any complexity to achieve a high performance ratio.
Date: December 2022
Creator: Gandhi, Himani Chirag
System: The UNT Digital Library

Intelligent ECG Acquisition and Processing System for Improved Sudden Cardiac Arrest (SCA) Prediction

The survival rate for a suddent cardiac arrest (SCA) is incredibly low, with less than one in ten surviving; most SCAs occur outside of a hospital setting. There is a need to develop an effective and efficient system that can sense, communicate and remediate potential SCA situations on a near real-time basis. This research presents a novel Zeolite-PDMS-based optically unobtrusive flexible dry electrodes for biosignal acquisition from various subjects while at rest and in motion. Two zeolite crystals (4A and 13X) are used to fabricate the electrodes. Three different sizes and two different filler concentrations are compared to identify the better performing electrode suited for electrocardiogram (ECG) data acquisition. A low-power, low-noise amplifier with chopper modulation is designed and implemented using the standard 180nm CMOS process. A commercial off-the-shelf (COTS) based wireless system is designed for transmitting ECG signals. Further, this dissertation provides a framework for Machine Learning Classification algorithms on large, open-source Arrhythmia and SCA datasets. Supervised models with features as the input data and deep learning models with raw ECG as input are compared using different methods. The machine learning tool classifies the datasets within a few minutes, saving time and effort for the physicians. The experimental results …
Date: December 2022
Creator: Kota, Venkata Deepa
System: The UNT Digital Library
Machine Learning Improvements for Data Partitioning and Classification Applied to Cardiac Arrhythmia Signals (open access)

Machine Learning Improvements for Data Partitioning and Classification Applied to Cardiac Arrhythmia Signals

This thesis creates a new method for the ethical splitting of data as well as improvements to neural network architectures to increase performance. Ethical dataset splitting should be based on statistics from the data, this prevents artificial manipulation of the data that helps or hurts the performance of a network. This bias introduced to the dataset can also be present by using the popular method of randomly splitting data into datasets. To remove bias from dataset splitting, the splits of a dataset must be based on statistics from the data. Improving neural network architectures to increase performance is very important for a wide range of applications, especially for classification of heartbeats. Every improvement matters, especially when the application means that any errors could put the life of a person in danger. These advancements being applied to heartbeat classification have exciting implications for saving thousands of lives and billions of dollars. The presented methods can also be expanded to a wide variety of applications and adapted to different types of data as increasing performance and splitting up datasets is important in all fields of machine learning.
Date: December 2022
Creator: Cayce, Garrett Irwin
System: The UNT Digital Library

An Optimized Control System for the Independent Control of the Inputs of Doherty Power Amplifier

This thesis presents an optimized drive signal control system for a 2.5 GHz Doherty power amplifier (PA). The designed system enables independent control of the amplitudes and phases of the drive signals fed to the inputs of two parallel PAs. This control system is demonstrated here for Doherty PA architecture with a combiner network which is used as an impedance inversion between the path of two parallel connected PAs. Independent control of the inputs is achieved by incorporating a variable attenuator (VA) and a variable phase shifter (VPS) in each of the two parallel paths. Integrating VA and VPS allows driving varying power levels with an arbitrary phase difference between the individual parallel PAs. A Combiner network consists of a quarter-wave transmission line at the output of the main power amplifier, which is used to invert the impedance between the main and peaking transistor. The specific VA (Qorvo QPC6614) and VPS (Qorvo QPC2108) components that are used for the test system provide an amplitude attenuation range from 0.5 dB to 31.5 dB with a step size of 0.5 dB and a phase range from 0◦ to 360◦ for a step size of 5.6◦at the intended operating frequency of 2.5 GHz, …
Date: December 2022
Creator: Sah, Pallav Kumar
System: The UNT Digital Library
Analysis of Compressive Sensing and Hardware Implementation of Orthogonal Matching Pursuit (open access)

Analysis of Compressive Sensing and Hardware Implementation of Orthogonal Matching Pursuit

My thesis is to understand the concept of compressive sensing algorithms. Compressive sensing will be a future alternate technique for the Nyquist rate, specific to some applications where sparsity property plays a major role. Software implementation of compressive sensing (CS) takes more time to reconstruct a signal from CS measurements, so we use the orthogonal matching pursuit and basis pursuit algorithms. We have used an image size of 256x256 is used for reconstruction and also implemented a field-programmable gate array (FPGA) of the orthogonal matching pursuit using an image.
Date: December 2022
Creator: Kadiyala, Mani Divya
System: The UNT Digital Library
Applications of Machine Learning for Remote Sensing and Environmental Monitoring (open access)

Applications of Machine Learning for Remote Sensing and Environmental Monitoring

This thesis covers applications of machine learning to the fields of remote sensing and environmental monitoring. First, a generalized background on the concepts, tools, and methods used throughout the remainder of the research project are introduced. Chapter 3 covers the implementation of artificial neural networks to improve low-cost particulate matter sensing networks using collocated high-quality sensors with varying dataset parameters. In Chapter 4, an attention-enhanced LSTM-Convolutional neural network is presented to reconstruct satellite-based aerosol optical depth data lost to atmospheric interference. Chapter 5 applies attention mechanisms and convolutional neural networks to the reconstruction and upsampling of satellite-based land surface temperature maps. Chapter 6 presents a model employing geospatial techniques and machine learning methods with a combination of ground-based and remote sensing data to produce a daily ultra-high resolution 30 meter mapping of the PM2.5 concentration across Denton County, Texas.
Date: December 2022
Creator: Daniels, Jacob Edward
System: The UNT Digital Library

Analysis of the Integration of LEO Satellite Constellations into 5G Networks

Low Earth orbit (LEO) satellite systems have been proposed as a resource for combating the challenges in 5G network coverage and expanding connectivity to a global realm. This research focuses on the current architecture of LEO satellite constellations, with an emphasis on satellite coverage, visibility patterns and coordination schemes. Key-elements of integrating LEO satellites into the eMBB component of 5G are presented and a breakdown of potential link channel characteristics and physical layer performance metrics are described. The produced information allows for a justified analysis on the conceptualized integration.
Date: December 2021
Creator: Cruz Vazquez, Martin
System: The UNT Digital Library
Air Corridors: Concept, Design, Simulation, and Rules of Engagement (open access)

Air Corridors: Concept, Design, Simulation, and Rules of Engagement

Air corridors are an integral part of the advanced air mobility infrastructure. They are the virtual highways in the sky for transportation of people and cargo in the controlled airspace at an altitude of around 1000 ft. to 2000 ft. above the ground level. This paper presents fundamental insights into the design of air corridors with high operational efficiency as well as zero collisions. It begins with the definitions of air cube, skylane or track, intersection, vertiport, gate, and air corridor. Then, a multi-layered air corridor model is proposed. Traffic at intersections is analyzed in detail with examples of vehicles turning in different directions. The concept of capacity of an air corridor is introduced along with the nature of distribution of locations of vehicles in the air corridor and collision probability inside the corridor are discussed. Finally, the results of simulations of traffic flows are presented.
Date: December 2021
Creator: Muna, Sabrina Islam
System: The UNT Digital Library
The Convolutional Recurrent Structure in Computer Vision Applications (open access)

The Convolutional Recurrent Structure in Computer Vision Applications

By organically fusing the methods of convolutional neural network (CNN) and recurrent neural network (RNN), this dissertation focuses on the application of optical character recognition and image classification processing. The first part of this dissertation presents an end-to-end novel receipt recognition system for capturing effective information from receipts (CEIR). The main contributions of this research part are divided into three parts. First, this research develops a preprocessing method for receipt images. Second, the modified connectionist text proposal network is introduced to execute text detection. Third, the CEIR combines the convolutional recurrent neural network with the connectionist temporal classification with maximum entropy regularization as a loss function to update the weights in networks and extract the characters from receipt. The CEIR system is validated with the scanned receipts optical character recognition and information extraction (SROIE) database. Furthermore, the CEIR system has strong robustness and can be extended to a variety of different scenarios beyond receipts. For the convolutional recurrent structure application of land use image classification, this dissertation comes up with a novel deep learning model for land use classification, the convolutional recurrent land use classifier (CRLUC), which further improves the accuracy in classifying remote sensing land use images. Besides, the …
Date: December 2021
Creator: Xie, Dong
System: The UNT Digital Library
Group Testing: A Practical Approach (open access)

Group Testing: A Practical Approach

Broadly defined, group testing is the study of finding defective items in a large set. In the medical infection setting, that implies classifying each member of a population as infected or uninfected, while minimizing the total number of tests.
Date: December 2021
Creator: Gollapudi, Sri Srujan
System: The UNT Digital Library
Efficient Linear Secure Computation and Symmetric Private Information Retrieval Protocols (open access)

Efficient Linear Secure Computation and Symmetric Private Information Retrieval Protocols

Security and privacy are of paramount importance in the modern information age. Secure multi-party computation and private information retrieval are canonical and representative problems in cryptography that capture the key challenges in understanding the fundamentals of security and privacy. In this dissertation, we use information theoretic tools to tackle these two classical cryptographic primitives. In the first part, we consider the secure multi-party computation problem, where multiple users, each holding an independent message, wish to compute a function on the messages without revealing any additional information. We present an efficient protocol in terms of randomness cost to securely compute a vector linear function. In the second part, we discuss the symmetric private information retrieval problem, where a user wishes to retrieve one message from a number of replicated databases while keeping the desired message index a secret from each individual database. Further, the user learns nothing about the other messages. We present an optimal protocol that achieves the minimum upload cost for symmetric private information retrieval, i.e., the queries sent from the user to the databases have the minimum number of bits.
Date: December 2020
Creator: Zhou, Yanliang
System: The UNT Digital Library

Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic Devices

In this work, we explored one material from the broad family of 2D semiconductors, namely WSe2 to serve as an enabler for advanced, low-power, high-performance nanoelectronics and optoelectronic devices. A 2D WSe2 based field-effect-transistor (FET) was designed and fabricated using electron-beam lithography, that revealed an ultra-high mobility of ~ 625 cm2/V-s, with tunable charge transport behavior in the WSe2 channel, making it a promising candidate for high speed Si-based complimentary-metal-oxide-semiconductor (CMOS) technology. Furthermore, optoelectronic properties in 2D WSe2 based photodetectors and 2D WSe2/2D MoS2 based p-n junction diodes were also analyzed, where the photoresponsivity R and external quantum efficiency were exceptional. The monolayer WSe2 based photodetector, fabricated with Al metal contacts, showed a high R ~502 AW-1 under white light illumination. The EQE was also found to vary from 2.74×101 % - 4.02×103 % within the 400 nm -1100 nm spectral range of the tunable laser source. The interfacial metal-2D WSe2 junction characteristics, which promotes the use of such devices for end-use optoelectronics and quantum scale systems, were also studied and the interfacial stated density Dit in Al/2D WSe2 junction was computed to be the lowest reported to date ~ 3.45×1012 cm-2 eV-1. We also examined the large exciton binding …
Date: December 2020
Creator: Bandyopadhyay, Avra Sankar
System: The UNT Digital Library

Deep Learning Approach for Sensing Cognitive Radio Channel Status

Access: Use of this item is restricted to the UNT Community
Cognitive Radio (CR) technology creates the opportunity for unlicensed users to make use of the spectral band provided it does not interfere with any licensed user. It is a prominent tool with spectrum sensing functionality to identify idle channels and let the unlicensed users avail them. Thus, the CR technology provides the consumers access to a very large spectrum, quality spectral utilization, and energy efficiency due to spectral load balancing. However, the full potential of the CR technology can be realized only with CRs equipped with accurate mechanisms to predict/sense the spectral holes and vacant spectral bands without any prior knowledge about the characteristics of traffic in a real-time environment. Multi-layered perception (MLP), the popular neural network trained with the back-propagation (BP) learning algorithm, is a keen tool for classification of the spectral bands into "busy" or "idle" states without any a priori knowledge about the user system features. In this dissertation, we proposed the use of an evolutionary algorithm, Bacterial Foraging Optimization Algorithm (BFOA), for the training of the MLP NN. We have compared the performance of the proposed system with the traditional algorithm and with the Hybrid GA-PSO method. With the results of a simulation experiment that this …
Date: December 2019
Creator: Gottapu, Srinivasa Kiran
System: The UNT Digital Library
A Feasibility Study of Cellular Communication and Control of Unmanned Aerial Vehicles (open access)

A Feasibility Study of Cellular Communication and Control of Unmanned Aerial Vehicles

Consumer drones have used both standards such as Wi-Fi as well as proprietary communication protocols, such as DJI's OcuSync. While these methods are well suited to certain flying scenarios, they are limited in range to around 4.3 miles. Government and military unmanned aerial vehicles (UAVs) controlled through satellites allow for a global reach in a low-latency environment. To address the range issue of commercial UAVs, this thesis investigates using standardized cellular technologies for command and control of UAV systems. The thesis is divided into five chapters: Chapter 1 is the introduction to the thesis. Chapter 2 describes the equipment used as well as the test setup. This includes the drone used, the cellular module used, the microcontroller used, and a description of the software written to collect the data. Chapter 3 describes the data collection goals, as well as locations in the sky that were flown in order to gather experimental data. Finally, the results are presented in Chapter 4, which draws limited correlation between the collected data and flight readiness Chapter 5 wraps up the thesis with a conclusion and future areas for research are also presented.
Date: December 2019
Creator: Gardner, Michael Alan
System: The UNT Digital Library
Optimization of RSA Cryptography for FPGA and ASIC Applications (open access)

Optimization of RSA Cryptography for FPGA and ASIC Applications

RSA cryptography is one of the most widely used cryptosystems in the world. FPGA/ASIC implementations for the classic RSA cryptosystem have high resource utilization due to the use of the Extended Euclid's algorithm for MOD inverse generation, the MOD exponent operation for encryption and decryption, and through non finite-field arithmetic. This thesis translates the RSA cryptosystem into the finite-field domain of arithmetic which greatly increases the range of encryption and decryption keys and replaces the MOD exponent with a multiplication. A new algorithm, the SPX algorithm, is presented and shown to outperform Euclid's algorithm, which is the most widely used mechanism to compute the GCD in FPGA implementations of RSA. The SPX algorithm is then extended to support the computation of the MOD inverse and supply decryption keys. Lastly, a finite-field RSA system is created and shown to support character encryption and decryption while being designed to be integrated into any larger system.
Date: December 2019
Creator: Simpson, Zachary P
System: The UNT Digital Library
Improving Photovoltaic Panel Efficiency by Cooling Water Circulation (open access)

Improving Photovoltaic Panel Efficiency by Cooling Water Circulation

This thesis aims to increase photovoltaic (PV) panel power efficiency by employing a cooling system based on water circulation, which represents an improved version of water flow based active cooling systems. Theoretical calculations involved finding the heat produced by the PV panel and the circulation water flow required to remove this heat. A data logger and a cooling system for a test panel of 20W was designed and employed to study the relationship between the PV panel surface temperature and its output power. This logging and cooling system includes an Arduino microcontroller extended with a data logging shield, temperature sensing probes, current sensors, and a DC water pump. Real-time measurements were logged every minute for one or two day periods under various irradiance and air temperature conditions. For these experiments, a load resistance was chosen to operate the test panel at its maximum power point. Results indicate that the cooling system can yield an improvement of 10% in power production. Based on the observations from the test panel experiments, a cooling system was devised for a PV panel array of 640 W equipped with a commercial charge controller. The test data logger was repurposed for this larger system. An identical …
Date: December 2018
Creator: Joseph, Jyothis
System: The UNT Digital Library
Development and Integration of a Low-Cost Occupancy Monitoring System (open access)

Development and Integration of a Low-Cost Occupancy Monitoring System

The world is getting busier and more crowded each year. Due to this fact resources such as public transport, available energy, and usable space are becoming congested and require vast amounts of logistical support. As of February 2018, nearly 95% of Americans own a mobile cell phone according to the Pew Research Center. These devices are consistently broadcasting their presents to other devices. By leveraging this data to provide occupational awareness of high traffic areas such as public transit stops, buildings, etc logistic efforts can be streamline to best suit the dynamics of the population. With the rise of The Internet of Things, a scalable low-cost occupancy monitoring system can be deployed to collect this broadcasted data and present it to logistics in real time. Simple IoT devices such as the Raspberry Pi, wireless cards capable of passive monitoring, and the utilization of specialized software can provide this capability. Additionally, this combination of hardware and software can be integrated in a way to be as simple as a typical plug and play set up making system deployment quick and easy. This effort details the development and integration work done to deliver a working product acting as a foundation to build …
Date: December 2018
Creator: Mahjoub, Youssif
System: The UNT Digital Library
Smart Microgrid Energy Management Using a Wireless Sensor Network (open access)

Smart Microgrid Energy Management Using a Wireless Sensor Network

Modern power generation aims to utilize renewable energy sources such as solar power and wind to supply customers with power. This approach avoids exhaustion of fossil fuels as well as provides clean energy. Microgrids have become popular over the years, as they contain multiple renewable power sources and battery storage systems to supply power to the entities within the network. These microgrids can share power with the main grid or operate islanded from the grid. During an islanded scenario, self-sustainability is crucial to ensure balance between supply and demand within the microgrid. This can be accomplished by a smart microgrid that can monitor system conditions and respond to power imbalance by shedding loads based on priority. Such a method ensures security of the most important loads in the system and manages energy by automatically disconnecting lower priority loads until system conditions have improved. This thesis introduces a prioritized load shedding algorithm for the microgrid at the University of North Texas Discovery Park and highlight how such an energy management algorithm can add reliability to an islanded microgrid.
Date: December 2018
Creator: Darden, Kelvin S
System: The UNT Digital Library
Distributed Consensus, Optimization and Computation in Networked Systems (open access)

Distributed Consensus, Optimization and Computation in Networked Systems

In the first part of this thesis, we propose a distributed consensus algorithm under multi-layer multi-group structure with communication time delays. It is proven that the consensus will be achieved in both time-varying and fixed communication delays. In the second part, we study the distributed optimization problem with a finite-time mechanism. It is shown that our distributed proportional-integral algorithm can exponentially converge to the unique global minimizer when the gain parameters satisfy the sufficient conditions. Moreover, we equip the proposed algorithm with a decentralized algorithm, which enables an arbitrarily chosen agent to compute the exact global minimizer within a finite number of time steps, using its own states observed over a successive time steps. In the third part, it is shown the implementation of accelerated distributed energy management for microgrids is achieved. The results presented in the thesis are corroborated by simulations or experiments.
Date: December 2018
Creator: Yao, Lisha
System: The UNT Digital Library
The Chief Security Officer Problem (open access)

The Chief Security Officer Problem

The Chief Security Officer Problem (CSO) consists of a CSO, a group of agents trying to communicate with the CSO and a group of eavesdroppers trying to listen to the conversations between the CSO and its agents. Through Lemmas and Theorems, several Information Theoretic questions are answered.
Date: December 2018
Creator: Tanga, Vikas Reddy
System: The UNT Digital Library
Real-Time Finger Spelling American Sign Language Recognition Using Deep Convolutional Neural Networks (open access)

Real-Time Finger Spelling American Sign Language Recognition Using Deep Convolutional Neural Networks

This thesis presents design and development of a gesture recognition system to recognize finger spelling American Sign Language hand gestures. We developed this solution using the latest deep learning technique called convolutional neural networks. This system uses blink detection to initiate the recognition process, Convex Hull-based hand segmentation with adaptive skin color filtering to segment hand region, and a convolutional neural network to perform gesture recognition. An ensemble of four convolutional neural networks are trained with a dataset of 25254 images for gesture recognition and a feedback unit called head pose estimation is implemented to validate the correctness of predicted gestures. This entire system was developed using Python programming language and other supporting libraries like OpenCV, Tensor flow and Dlib to perform various image processing and machine learning tasks. This entire application can be deployed as a web application using Flask to make it operating system independent.
Date: December 2018
Creator: Viswavarapu, Lokesh Kumar
System: The UNT Digital Library
Development of a Wireless Sensor Network System for Occupancy Monitoring (open access)

Development of a Wireless Sensor Network System for Occupancy Monitoring

The ways that people use libraries have changed drastically over the past few decades. Proliferation of computers and the internet have led to the purpose of libraries expanding from being only places where information is stored, to spaces where people teach, learn, create, and collaborate. Due to this, the ways that people occupy the space in a library have also changed. To keep up with these changes and improve patron experience, institutions collect data to determine how their spaces are being used. This thesis involves the development a system that collects, stores, and analyzes data relevant to occupancy to learn how a space is being utilized. Data is collected from a temperature and humidity sensor, passive Infrared sensor, and an Infrared thermal sensor array to observe people as they occupy and move through a space. Algorithms were developed to analyze the collected sensor data to determine how many people are occupying a space or the directions that people are moving through a space. The algorithms demonstrate the ability to track multiple people moving through a space as well as count the number of people in a space with an RMSE of roughly 0.39 people.
Date: December 2018
Creator: Onoriose, Ovie
System: The UNT Digital Library