175 Matching Results

Results open in a new window/tab.

Assistive Navigation Technology for Visually Impaired Individuals

Sight is essential in our daily tasks. Compensatory senses have been used for centuries by visually impaired individuals to navigate independently. The help of technology can minimize some challenges for visually impaired individuals. Assistive navigation technologies facilitate the pathfinding and tracing in indoor scenarios. Different modules are added to assistive navigation technologies to warn about the obstacles not only on the ground but about hanging objects. In this work, we attempt to explore new methods to assist visually impaired individuals in navigating independently in an indoor scenario. We employed a location estimation algorithm based on the fingerprinting method to estimate the initial location of the user. We mitigate the error of estimation with particle filter. The shortest path has been calculated with an A* algorithm. To provide the user with an accident-free experiment, we employed an obstacle avoidance algorithm capable of warning the users about the potential hazards. Finally, to provide an effective means of communication with the user, we employed text-to-speech and speech recognition algorithms. The main contribution of this work is to glue these modules together efficiently and affordably.
Date: August 2020
Creator: Norouzi Kandalan, Roya
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Inkjet Printed Transition Metal Dichalcogenides and Organohalide Perovskites for Photodetectors and Solar Cells (open access)

Inkjet Printed Transition Metal Dichalcogenides and Organohalide Perovskites for Photodetectors and Solar Cells

This dissertation is devoted to the development of novel devices for optoelectronic and photovoltaic applications using the promise of inkjet printing with two-dimensional (2D) materials. A systematic approach toward the characterization of the liquid exfoliated 2D inks comprising of graphene, molybdenum disulfide (MoS2), tungsten diselenide (WSe2), and 2D perovskites is discussed at depth. In the first study, the biocompatibility of 2D materials -- graphene and MoS2 -- that were drop cast onto flexible PET and polyimide substrates using mouse embryonic fibroblast (STO) and human esophageal fibroblast (HEF) cell lines, was explored. The polyimide samples for both STO and HEF showed high biocompatibility with a cell survival rate of up to ~ 98% and a confluence rate of 70-98%. An inkjet printed, biocompatible, heterostructure photodetector was constructed using inks of photo-active MoS2 and electrically conducting graphene, which facilitated charge collection of the photocarriers. The importance of such devices stems from their potential utility in age-related-macular degeneration (AMD), which is a condition where the photosensitive retinal tissue degrades with aging, eventually compromising vision. The biocompatible inkjet printed 2D heterojunction devices were photoresponsive to broadband incoming radiation in the visible regime, and the photocurrent scaled proportionally with the incident light intensity, exhibiting a …
Date: May 2020
Creator: Hossain, Ridwan Fayaz
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Interference Alignment through Propagation Delay (open access)

Interference Alignment through Propagation Delay

With the rapid development of wireless communication technology, the demands for higher communication rates are increasing. Higher communication rate corresponds to higher DoF. Interference alignment, which is an emerging interference management technique, is able to substantially increase the DoF of wireless communication systems. This thesis mainly studies the delay-based interference alignment technique. The key problem lies in the design of the transmission scheme and the appropriate allocation of the propagation delay, so as to achieve the desired DoF of different wireless networks. In addition, through delay-based interference alignment, the achievability of extreme points of the DoF region of different wireless networks can be proved.
Date: May 2020
Creator: Liu, Zhonghao
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Design of a Wearable Flexible Resonant Body Temperature Sensor with Inkjet-Printing (open access)

Design of a Wearable Flexible Resonant Body Temperature Sensor with Inkjet-Printing

A wearable body temperature sensor would allow for early detection of fever or infection, as well as frequent and accurate hassle-free recording. This thesis explores the design of a body-temperature-sensing device inkjet-printed on a flexible substrate. All structures were first modeled by first-principles, theoretical calculations, and then simulated in HFSS. A variety of planar square inductor geometries were studied before selecting an optimal design. The designs were fabricated using multiple techniques and compared to the simulation results. It was determined that inductance must be carefully measured and documented to ensure good functionality. The same is true for parallel-plate and interdigitated capacitors. While inductance remains relatively constant with temperature, the capacitance of the device with a temperature-sensitive dielectric layer will result in a shift in the resonant frequency as environmental or ambient temperature changes. This resonant frequency can be wirelessly detected, with no battery required for the sensing device, from which the temperature can be deduced. From this work, the optimized version of the design comprises of conductive silver in with a temperature-sensitive graphene oxide layer, intended for inkjet-printing on flexible polyimide substrates. Graphene oxide demonstrates a high dielectric permittivity with good sensing capabilities and high accuracy. This work pushes the …
Date: May 2020
Creator: Horn, Jacqueline Marie
Object Type: Thesis or Dissertation
System: The UNT Digital Library
High-Performance Detectors Based on the Novel Electronic and Optoelectronic Properties of Crystalline 2D van der Waals Solids (open access)

High-Performance Detectors Based on the Novel Electronic and Optoelectronic Properties of Crystalline 2D van der Waals Solids

In this work, we study the properties and device applications of MoS2, black phosphorus, MoOx, and NbSe2. We first start with the design, fabrication, and characterization of ultra-high responsivity photodetectors based on mesoscopic multilayer MoS2. The device architecture is comprised of a metal-semiconductor-metal (MSM) photodetector, where Mo was used as the contact metal to suspended MoS2 membranes. The dominant photocurrent mechanism was determined to be the photoconductive effect, while a contribution from the photogating effect was also noted from trap-states that yielded a wide spectral photoresponse from UV-to-IR with an external quantum efficiency (EQE) ~ 104. From time-resolved photocurrent measurements, a fast decay time and response time were obtained with a stream of incoming ON/OFF white light pulses. Another interesting semiconductor 2D material that has attracted special attention due to its small bandgap and ultra-high hole mobility is the black phosphorus. An analysis of the optoelectronic properties and photocurrent generation mechanisms in two-dimensional (2D) multilayer crystallites of black phosphorus (BP) was conducted from 350 K down to cryogenic temperatures using a broad-band white light source. The Mo-BP interface yielded a low Schottky barrier "φ" _"SB" ~ -28.3 meV and a high photoresponsivity R of ~ 2.43 x 105 A/W at …
Date: May 2020
Creator: Saenz Saenz, Gustavo Alberto
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Efficient Solar Energy Harvesting and Management for Wireless Sensor Networks under Varying Solar Irradiance Conditions

Although wireless sensor networks have been successfully used for environmental monitoring, one of the major challenges that this technology has been facing is supplying continuous and reliable electrical power during long-term field deployment. Batteries require repetitive visits to the deployment site to replace them once discharged; admittedly, they can be recharged from solar panels, but this only works in open areas where solar radiation is unrestricted. This dissertation introduces a novel approach to design and implement a reliable efficient solar energy harvester to continuously, and autonomously, provide power to wireless sensor nodes for long-term applications. The system uses supercapacitors charged by a solar panel and is designed to reduce power consumption to very low levels. Field tests were conducted for more than a year of continuous operation and under a variety of conditions, including areas under dense foliage. The resulting long-term field data demonstrates the feasibility and sustainability of the harvester system for challenging applications. In addition, we analyzed solar radiation data and supercapacitor charging behavior and showed that the harvester system can operate battery free, running on the power provided by supercapacitors. A battery is included only for backup in case the supercapacitor storage fails. The proposed approach provides …
Date: May 2020
Creator: Gurung, Sanjaya
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Gamification to Solve a Mapping Problem in Electrical Engineering (open access)

Gamification to Solve a Mapping Problem in Electrical Engineering

Coarse-Grained Reconfigurable Architectures (CGRAs) are promising in developing high performance low-power portable applications. In this research, we crowdsource a mapping problem using gamification to harnass human intelligence. A scientific puzzle game, Untangled, was developed to solve a mapping problem by encapsulating architectural characteristics. The primary motive of this research is to draw insights from the mapping solutions of players who possess innate abilities like decision-making, creative problem-solving, recognizing patterns, and learning from experience. In this dissertation, an extensive analysis was conducted to investigate how players' computational skills help to solve an open-ended problem with different constraints. From this analysis, we discovered a few common strategies among players, and subsequently, a library of dictionaries containing identified patterns from players' solutions was developed. The findings help to propose a better version of the game that incorporates these techniques recognized from the experience of players. In the future, an updated version of the game that can be developed may help low-performance players to provide better solutions for a mapping problem. Eventually, these solutions may help to develop efficient mapping algorithms, In addition, this research can be an exemplar for future researchers who want to crowdsource such electrical engineering problems and this approach can …
Date: May 2020
Creator: Balavendran Joseph, Rani Deepika
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Design of Ultra Wideband Low Noise Amplifier for Satellite Communications (open access)

Design of Ultra Wideband Low Noise Amplifier for Satellite Communications

This thesis offers the design and improvement of a 2 GHz to 20 GHz low noise amplifier (LNA) utilizing pHEMT technology. The pHEMT technology allows the LNA to generate a boosted signal at a lower noise figure (NF) while consuming less power and achieving smooth overall gain. The design achieves an overall gain (S21) of ≥ 10 dB with an NF ≤ 2 dB while consuming ≤ 30 mA of power while using commercial off-the-shelf (COTS) components.
Date: May 2020
Creator: Webber, Scott
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Deep Learning Approach for Sensing Cognitive Radio Channel Status

Access: Use of this item is restricted to the UNT Community
Cognitive Radio (CR) technology creates the opportunity for unlicensed users to make use of the spectral band provided it does not interfere with any licensed user. It is a prominent tool with spectrum sensing functionality to identify idle channels and let the unlicensed users avail them. Thus, the CR technology provides the consumers access to a very large spectrum, quality spectral utilization, and energy efficiency due to spectral load balancing. However, the full potential of the CR technology can be realized only with CRs equipped with accurate mechanisms to predict/sense the spectral holes and vacant spectral bands without any prior knowledge about the characteristics of traffic in a real-time environment. Multi-layered perception (MLP), the popular neural network trained with the back-propagation (BP) learning algorithm, is a keen tool for classification of the spectral bands into "busy" or "idle" states without any a priori knowledge about the user system features. In this dissertation, we proposed the use of an evolutionary algorithm, Bacterial Foraging Optimization Algorithm (BFOA), for the training of the MLP NN. We have compared the performance of the proposed system with the traditional algorithm and with the Hybrid GA-PSO method. With the results of a simulation experiment that this …
Date: December 2019
Creator: Gottapu, Srinivasa Kiran
Object Type: Thesis or Dissertation
System: The UNT Digital Library
A Feasibility Study of Cellular Communication and Control of Unmanned Aerial Vehicles (open access)

A Feasibility Study of Cellular Communication and Control of Unmanned Aerial Vehicles

Consumer drones have used both standards such as Wi-Fi as well as proprietary communication protocols, such as DJI's OcuSync. While these methods are well suited to certain flying scenarios, they are limited in range to around 4.3 miles. Government and military unmanned aerial vehicles (UAVs) controlled through satellites allow for a global reach in a low-latency environment. To address the range issue of commercial UAVs, this thesis investigates using standardized cellular technologies for command and control of UAV systems. The thesis is divided into five chapters: Chapter 1 is the introduction to the thesis. Chapter 2 describes the equipment used as well as the test setup. This includes the drone used, the cellular module used, the microcontroller used, and a description of the software written to collect the data. Chapter 3 describes the data collection goals, as well as locations in the sky that were flown in order to gather experimental data. Finally, the results are presented in Chapter 4, which draws limited correlation between the collected data and flight readiness Chapter 5 wraps up the thesis with a conclusion and future areas for research are also presented.
Date: December 2019
Creator: Gardner, Michael Alan
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Optimization of RSA Cryptography for FPGA and ASIC Applications (open access)

Optimization of RSA Cryptography for FPGA and ASIC Applications

RSA cryptography is one of the most widely used cryptosystems in the world. FPGA/ASIC implementations for the classic RSA cryptosystem have high resource utilization due to the use of the Extended Euclid's algorithm for MOD inverse generation, the MOD exponent operation for encryption and decryption, and through non finite-field arithmetic. This thesis translates the RSA cryptosystem into the finite-field domain of arithmetic which greatly increases the range of encryption and decryption keys and replaces the MOD exponent with a multiplication. A new algorithm, the SPX algorithm, is presented and shown to outperform Euclid's algorithm, which is the most widely used mechanism to compute the GCD in FPGA implementations of RSA. The SPX algorithm is then extended to support the computation of the MOD inverse and supply decryption keys. Lastly, a finite-field RSA system is created and shown to support character encryption and decryption while being designed to be integrated into any larger system.
Date: December 2019
Creator: Simpson, Zachary P
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Modeling and Design of Antennas for Loosely Coupled Links in Wireless Power Transfer Applications (open access)

Modeling and Design of Antennas for Loosely Coupled Links in Wireless Power Transfer Applications

Wireless power transfer (WPT) systems are important in many areas, such as medical, communication, transportation, and consumer electronics. The underlying WPT system is comprised of a transmitter (TX) and receiver (RX). For biomedical applications, such systems can be implemented on rigid or flexible substrates and can be implanted or wearable. The efficiency of a WPT system is based on power transfer efficiency (PTE). Many WPT system optimization techniques have been explored to achieve the highest PTE possible. These are based on either a figure-of-merit (FOM) approach, quality factor (Q-factor) maximization, or by sweeping values for coil geometries. Four WPT systems for biomedical applications are implemented with inductive coupling. The thesis later presents an optimization technique for finding the maximum PTE of a range of frequencies and coil shapes through frequency, geometry and shape sweeping. Five optimized TX coil designs for different operating frequencies are fabricated for three shapes: square, hexagonal, and octagonal planar-spirals. The corresponding RX is implemented on polyimide tape with ink-jet-print (IJP) silver. At 80 MHz, the maximum measured PTE achieved is 2.781% at a 10 mm distance in the air for square planar-spiral coils.
Date: August 2019
Creator: Sinclair, Melissa Ann
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Realization of LSTM Based Cognitive Radio Network (open access)

Realization of LSTM Based Cognitive Radio Network

This thesis presents the realization of an intelligent cognitive radio network that uses long short term memory (LSTM) neural network for sensing and predicting the spectrum activity at each instant of time. The simulation is done using Python and GNU Radio. The implementation is done using GNU Radio and Universal Software Radio Peripherals (USRP). Simulation results show that the confidence factor of opportunistic users not causing interference to licensed users of the spectrum is 98.75%. The implementation results demonstrate high reliability of the LSTM based cognitive radio network.
Date: August 2019
Creator: Valluru, Aravind-Deshikh
Object Type: Thesis or Dissertation
System: The UNT Digital Library
A Cognitive MIMO OFDM Detector Design for Computationally Efficient Space-Time Decoding (open access)

A Cognitive MIMO OFDM Detector Design for Computationally Efficient Space-Time Decoding

In this dissertation a computationally efficient cognitive multiple-input multiple-output (MIMO) orthogonal frequency division duplexing (OFDM) detector is designed to decode perfect space-time coded signals which are able maximize the diversity and multiplexing properties of a rich fading MIMO channel. The adaptive nature of the cognitive detector allows a MIMO OFDM communication system to better meet to needs of future wireless communication networks which require both high reliability and low run-time complexity depending on the propagation environment. The cognitive detector in conjunction with perfect space-time coding is able to achieve up to a 2 dB bit-error rate (BER) improvement at low signal-to-noise ratio (SNR) while also achieving comparable runtime complexity in high SNR scenarios.
Date: August 2019
Creator: Grabner, Mitchell J
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Quantile Regression Deep Q-Networks for Multi-Agent System Control

Access: Use of this item is restricted to the UNT Community
Training autonomous agents that are capable of performing their assigned job without fail is the ultimate goal of deep reinforcement learning. This thesis introduces a dueling Quantile Regression Deep Q-network, where the network learns the state value quantile function and advantage quantile function separately. With this network architecture the agent is able to learn to control simulated robots in the Gazebo simulator. Carefully crafted reward functions and state spaces must be designed for the agent to learn in complex non-stationary environments. When trained for only 100,000 timesteps, the agent is able reach asymptotic performance in environments with moving and stationary obstacles using only the data from the inertial measurement unit, LIDAR, and positional information. Through the use of transfer learning, the agents are also capable of formation control and flocking patterns. The performance of agents with frozen networks is improved through advice giving in Deep Q-networks by use of normalized Q-values and majority voting.
Date: May 2019
Creator: Howe, Dustin
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Mesh Networking for Inter-UAV Communications (open access)

Mesh Networking for Inter-UAV Communications

Unmanned aerial systems (UASs) have a great potential to enhanced situational awareness in public safety operations. Many UASs operating in the same airspace can cause mid-air collisions. NASA and the FAA are developing a UAS traffic management (UTM) system, which could be used in public safety operations to manage the UAS airspace. UTM relies on an existing communication backhaul, however natural disasters may disrupt existing communications infrastructure or occur in areas where no backhaul exists. This thesis outlines a robust communications alternative that interfaces a fleet of UASs with a UTM service supplier (USS) over a mesh network. Additionally, this thesis outlines an algorithm for vehicle-to-vehicle discovery and communication over the mesh network.
Date: May 2019
Creator: Walton, Michael Tanner
Object Type: Thesis or Dissertation
System: The UNT Digital Library

Proximal Policy Optimization in StarCraft

Access: Use of this item is restricted to the UNT Community
Deep reinforcement learning is an area of research that has blossomed tremendously in recent years and has shown remarkable potential in computer games. Real-time strategy game has become an important field of artificial intelligence in game for several years. This paper is about to introduce a kind of algorithm that used to train agents to fight against computer bots. Not only because games are excellent tools to test deep reinforcement learning algorithms for their valuable insight into how well an algorithm can perform in isolated environments without the real-life consequences, but also real-time strategy games are a very complex genre that challenges artificial intelligence agents in both short-term or long-term planning. In this paper, we introduce some history of deep learning and reinforcement learning. Then we combine them with StarCraft. PPO is the algorithm which have some of the benefits of trust region policy optimization (TRPO), but it is much simpler to implement, more general for environment, and have better sample complexity. The StarCraft environment: Blood War Application Programming Interface (BWAPI) is open source to test. The results show that PPO can work well in BWAPI and train units to defeat the opponents. The algorithm presented in the thesis is …
Date: May 2019
Creator: Liu, Yuefan
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Design of Voltage Boosting Rectifiers for Wireless Power Transfer Systems (open access)

Design of Voltage Boosting Rectifiers for Wireless Power Transfer Systems

This thesis presents a multi-stage rectifier for wireless power transfer in biomedical implant systems. The rectifier is built using Schottky diodes. The design has been simulated in 0.5µm and 130nm CMOS processes. The challenges for a rectifier in a wireless power transfer systems are observed to be the efficiency, output voltage yield, operating frequency range and the minimum input voltage the rectifier can convert. The rectifier outperformed the contemporary works in the mentioned criteria.
Date: May 2019
Creator: Suri, Ramaa Saket
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Implementations of Fuzzy Adaptive Dynamic Programming Controls on DC to DC Converters (open access)

Implementations of Fuzzy Adaptive Dynamic Programming Controls on DC to DC Converters

DC to DC converters stabilize the voltage obtained from voltage sources such as solar power system, wind energy sources, wave energy sources, rectified voltage from alternators, and so forth. Hence, the need for improving its control algorithm is inevitable. Many algorithms are applied to DC to DC converters. This thesis designs fuzzy adaptive dynamic programming (Fuzzy ADP) algorithm. Also, this thesis implements both adaptive dynamic programming (ADP) and Fuzzy ADP on DC to DC converters to observe the performance of the output voltage trajectories.
Date: May 2019
Creator: Chotikorn, Nattapong
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Improving Photovoltaic Panel Efficiency by Cooling Water Circulation (open access)

Improving Photovoltaic Panel Efficiency by Cooling Water Circulation

This thesis aims to increase photovoltaic (PV) panel power efficiency by employing a cooling system based on water circulation, which represents an improved version of water flow based active cooling systems. Theoretical calculations involved finding the heat produced by the PV panel and the circulation water flow required to remove this heat. A data logger and a cooling system for a test panel of 20W was designed and employed to study the relationship between the PV panel surface temperature and its output power. This logging and cooling system includes an Arduino microcontroller extended with a data logging shield, temperature sensing probes, current sensors, and a DC water pump. Real-time measurements were logged every minute for one or two day periods under various irradiance and air temperature conditions. For these experiments, a load resistance was chosen to operate the test panel at its maximum power point. Results indicate that the cooling system can yield an improvement of 10% in power production. Based on the observations from the test panel experiments, a cooling system was devised for a PV panel array of 640 W equipped with a commercial charge controller. The test data logger was repurposed for this larger system. An identical …
Date: December 2018
Creator: Joseph, Jyothis
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Development and Integration of a Low-Cost Occupancy Monitoring System (open access)

Development and Integration of a Low-Cost Occupancy Monitoring System

The world is getting busier and more crowded each year. Due to this fact resources such as public transport, available energy, and usable space are becoming congested and require vast amounts of logistical support. As of February 2018, nearly 95% of Americans own a mobile cell phone according to the Pew Research Center. These devices are consistently broadcasting their presents to other devices. By leveraging this data to provide occupational awareness of high traffic areas such as public transit stops, buildings, etc logistic efforts can be streamline to best suit the dynamics of the population. With the rise of The Internet of Things, a scalable low-cost occupancy monitoring system can be deployed to collect this broadcasted data and present it to logistics in real time. Simple IoT devices such as the Raspberry Pi, wireless cards capable of passive monitoring, and the utilization of specialized software can provide this capability. Additionally, this combination of hardware and software can be integrated in a way to be as simple as a typical plug and play set up making system deployment quick and easy. This effort details the development and integration work done to deliver a working product acting as a foundation to build …
Date: December 2018
Creator: Mahjoub, Youssif
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Smart Microgrid Energy Management Using a Wireless Sensor Network (open access)

Smart Microgrid Energy Management Using a Wireless Sensor Network

Modern power generation aims to utilize renewable energy sources such as solar power and wind to supply customers with power. This approach avoids exhaustion of fossil fuels as well as provides clean energy. Microgrids have become popular over the years, as they contain multiple renewable power sources and battery storage systems to supply power to the entities within the network. These microgrids can share power with the main grid or operate islanded from the grid. During an islanded scenario, self-sustainability is crucial to ensure balance between supply and demand within the microgrid. This can be accomplished by a smart microgrid that can monitor system conditions and respond to power imbalance by shedding loads based on priority. Such a method ensures security of the most important loads in the system and manages energy by automatically disconnecting lower priority loads until system conditions have improved. This thesis introduces a prioritized load shedding algorithm for the microgrid at the University of North Texas Discovery Park and highlight how such an energy management algorithm can add reliability to an islanded microgrid.
Date: December 2018
Creator: Darden, Kelvin S
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Distributed Consensus, Optimization and Computation in Networked Systems (open access)

Distributed Consensus, Optimization and Computation in Networked Systems

In the first part of this thesis, we propose a distributed consensus algorithm under multi-layer multi-group structure with communication time delays. It is proven that the consensus will be achieved in both time-varying and fixed communication delays. In the second part, we study the distributed optimization problem with a finite-time mechanism. It is shown that our distributed proportional-integral algorithm can exponentially converge to the unique global minimizer when the gain parameters satisfy the sufficient conditions. Moreover, we equip the proposed algorithm with a decentralized algorithm, which enables an arbitrarily chosen agent to compute the exact global minimizer within a finite number of time steps, using its own states observed over a successive time steps. In the third part, it is shown the implementation of accelerated distributed energy management for microgrids is achieved. The results presented in the thesis are corroborated by simulations or experiments.
Date: December 2018
Creator: Yao, Lisha
Object Type: Thesis or Dissertation
System: The UNT Digital Library
The Chief Security Officer Problem (open access)

The Chief Security Officer Problem

The Chief Security Officer Problem (CSO) consists of a CSO, a group of agents trying to communicate with the CSO and a group of eavesdroppers trying to listen to the conversations between the CSO and its agents. Through Lemmas and Theorems, several Information Theoretic questions are answered.
Date: December 2018
Creator: Tanga, Vikas Reddy
Object Type: Thesis or Dissertation
System: The UNT Digital Library