402 Matching Results

Results open in a new window/tab.

A Critique to the Mythology of Lamkang Tribe Manipur (open access)

A Critique to the Mythology of Lamkang Tribe Manipur

A published critique to the mythology of the Lamkang tribe.
Date: 2000
Creator: Dilbung, Avince Anthony
System: The UNT Digital Library
Benchmarks and models for 1-D radiation transport in stochastic participating media (open access)

Benchmarks and models for 1-D radiation transport in stochastic participating media

Benchmark calculations for radiation transport coupled to a material temperature equation in a 1-D slab and 1-D spherical geometry binary random media are presented. The mixing statistics are taken to be homogeneous Markov statistics in the 1-D slab but only approximately Markov statistics in the 1-D sphere. The material chunk sizes are described by Poisson distribution functions. The material opacities are first taken to be constant and then allowed to vary as a strong function of material temperature. Benchmark values and variances for time evolution of the ensemble average of material temperature energy density and radiation transmission are computed via a Monte Carlo type method. These benchmarks are used as a basis for comparison with three other approximate methods of solution. One of these approximate methods is simple atomic mix. The second approximate model is an adaptation of what is commonly called the Levermore-Pomraning model and which is referred to here as the standard model. It is shown that recasting the temperature coupling as a type of effective scattering can be useful in formulating the third approximate model, an adaptation of a model due to Su and Pomraning which attempts to account for the effects of scattering in a stochastic …
Date: August 21, 2000
Creator: Miller, D. S.
System: The UNT Digital Library
Object-oriented algorithmic laboratory for ordering sparse matrices (open access)

Object-oriented algorithmic laboratory for ordering sparse matrices

We focus on two known NP-hard problems that have applications in sparse matrix computations: the envelope/wavefront reduction problem and the fill reduction problem. Envelope/wavefront reducing orderings have a wide range of applications including profile and frontal solvers, incomplete factorization preconditioning, graph reordering for cache performance, gene sequencing, and spatial databases. Fill reducing orderings are generally limited to--but an inextricable part of--sparse matrix factorization. Our major contribution to this field is the design of new and improved heuristics for these NP-hard problems and their efficient implementation in a robust, cross-platform, object-oriented software package. In this body of research, we (1) examine current ordering algorithms, analyze their asymptotic complexity, and characterize their behavior in model problems, (2) introduce new and improved algorithms that address deficiencies found in previous heuristics, (3) implement an object-oriented library of these algorithms in a robust, modular fashion without significant loss of efficiency, and (4) extend our algorithms and software to address both generalized and constrained problems. We stress that the major contribution is the algorithms and the implementation; the whole being greater than the sum of its parts. The initial motivation for implementing our algorithms in object-oriented software was to manage the inherent complexity. During our research …
Date: May 1, 2000
Creator: Kumfert, G K
System: The UNT Digital Library
Cooling of highly charged ions in a Penning trap (open access)

Cooling of highly charged ions in a Penning trap

Highly charged ions are extracted from an electron beam ion trap and guided to Retrap, a cryogenic Penning trap, where they are merged with laser cooled Be{sup +} ions. The Be{sup +} ions act as a coolant for the hot highly charged ions and their temperature is dropped by about 8 orders of magnitude in a few seconds. Such cold highly charged ions form a strongly coupled nonneutral plasma exhibiting, under such conditions, the aggregation of clusters and crystals. Given the right mixture, these plasmas can be studied as analogues of high density plasmas like white dwarf interiors, and potentially can lead to the development of cold highly charged ion beams for applications in nanotechnology. Due to the virtually non existent Doppler broadening, spectroscopy on highly charged ions can be performed to an unprecedented precision. The density and the temperature of the Be{sup +} plasma were measured and highly charged ions were sympathetically cooled to similar temperatures. Molecular dynamics simulations confirmed the shape, temperature and density of the highly charged ions. Ordered structures were observed in the simulations.
Date: March 31, 2000
Creator: Gruber, L
System: The UNT Digital Library
Microcalorimetry and the transition-edge sensor (open access)

Microcalorimetry and the transition-edge sensor

Many scientific and industrial applications call for quantum-efficient high-energy-resolution microcalorimeters for the measurement of x rays. The applications driving the development of these detectors involve the measurement of faint sources of x rays in which few photons reach the detector. Interesting astrophysical applications for these microcalorimeters include the measurement of composition and temperatures of stellar atmospheres and diffuse interstellar plasmas. Other applications of microcalorimeter technology include x-ray fluorescence (XRF) measurements of industrial or scientific samples. We are attempting to develop microcalorimeters with energy resolutions of several eV because many sources (such as celestial plasmas) contain combinations of elements producing emission lines spaced only a few eV apart. Our microcalorimeters consist of a metal-film absorber (250 {micro}m x 250{micro}m x 3 {micro}m of copper) coupled to a superconducting transition-edge-sensor (TES) thermometer. This microcalorimeter demonstrated an energy resolution of 42 eV (FWHM) at 6 keV, excellent linearity, and showed no evidence of position dependent response. The response of our microcalorimeters depends both on the temperature of the microcalorimeter and on the electrical current conducted through the TES thermometer. We present a microcalorimeter model that extends previous microcalorimeter theory to include additional current dependent effects. The model makes predictions about the effects of …
Date: April 1, 2000
Creator: Lindeman, M A
System: The UNT Digital Library
Superresolution of buried objects in layered media by near-field electromagnetic imaging (open access)

Superresolution of buried objects in layered media by near-field electromagnetic imaging

None
Date: September 1, 2000
Creator: Lehman, S K
System: The UNT Digital Library
Kinetics of (beta)(right arrow)(delta) Solid-Solid Phase Transition of HMX (open access)

Kinetics of (beta)(right arrow)(delta) Solid-Solid Phase Transition of HMX

In order to calculate the kinetic parameters from DSC data, we have used the generally accepted methods of Bershtein [13]. We have calculated the rate constants for 4 temperatures and the activation energy based on the shift in the transition temperature, {beta} {yields} {delta} for HMX. The values of E{sub a} from this work is 402 kJ/mol compared to previous results by Brill [9] of 204 kJ/mol. Brill and associates measured the phase transition of HMX using FTIR, sodium chloride plates and silicon oil. Given the differences in technique between FTIR and DSC the results found in this work are reasonable. In this investigation a large sample set (16) proved to be statistically valid for the determinations of k. Linear regressions were performed, observed and good fits were obtained, for each temperature. The enthalpy determination of {Delta}H{sub o}, for the {beta} {yields} {delta} phase transition was reproducible with in 3 parts in 100 over the range of this experiment. Thus, the data derived from this experiment k, E{sub a}, and {Delta}H{sub o} are valid parameters for the solid-solid phase transition. Obtaining pure {beta} phase HMX was very important for this investigation. Related to the phase change is the particle size …
Date: September 1, 2000
Creator: Weese, R K
System: The UNT Digital Library
Inertial Conference Fusion Semiannual Report October 1999 - March 2000, Volume 1, Number 1 (open access)

Inertial Conference Fusion Semiannual Report October 1999 - March 2000, Volume 1, Number 1

This first issue of the ''ICF Semiannual Report'' contains articles whose diverse subjects attest to the broad technical and scientific challenges that are at the forefront of the ICF program at LLNL. The first article describes the progress being made at solving the surface roughness problem on capsule mandrels. All NIF capsule options, except machined beryllium, require a mandrel upon which the ablator is deposited. This mandrel sets the baseline sphericity of the final capsule. Problems involving defects in the mandrel have been overcome using various techniques so that 2-mm-size mandrels can now be made that meet the NIF design specification. The second article validates and provides a detailed numerical investigation of the shadowgraph technique currently used to diagnose the surface roughness of a fuel ice layer inside of a transparent capsule. It is crucial for the success of the indirect-drive ignition targets that the techniques used to characterize ice-surface roughness be well understood. This study identifies methods for analyzing the bright band that give an accurate measure of the ice-surface roughness. The third article describes a series of realistic laser and target modifications that can lead to 3-4 times more energy coupling and 10 times greater yield from a …
Date: March 1, 2000
Creator: Hammel, B. A.
System: The UNT Digital Library
NIF optics (open access)

NIF optics

One of the major highlights of the technology development for the National Ignition Facility (NIF) is the optics. NIF will be the largest laser ever built, requiring 7500 large optics (over one foot across) and more than 30,000 small optics. The design, manufacture, and assembly of these important pieces have called for innovative ways to make optics of higher quality than ever before, and to do so at unprecedented speeds. The most obvious role of NIF optics is to steer the 192 laser beams through the 700-foot-long building onto a dime-size laser-fusion target. The less obvious optic roles are using NIF laser glass to create laser light out of normal light, and using KDP crystals to convert that laser light to the correct frequency; both of which are technically challenging requirements. The Optics Processing Laboratory and Optics Assembly Building enable the final preparation and mounting of these amazing optics for their use in NIF.
Date: August 30, 2000
Creator: Parham, T
System: The UNT Digital Library
NIF program management (open access)

NIF program management

None
Date: September 15, 2000
Creator: Carpenter, J & Warner, B
System: The UNT Digital Library
NIF frequently asked questions (open access)

NIF frequently asked questions

The Stockpile Stewardship Program is an initiative to maintain the nuclear deterrent of the United States in the post-Cold War era. It is based on the maintenance of our stockpile through an ongoing process of surveillance, assessment, refurbishment, and recertification, without nuclear testing. At the heart of the SSP is an attempt to bring advanced experimental and computational tools to bear on the evaluation and certification of the stockpile itself; these advanced scientific capabilities are necessary because of the cessation of nuclear testing. This science-based approach requires new tools: advanced computers for more detailed 3-D simulations, multi-axis hydrodynamic facilities and plutonium research facilities for physics measurements of primaries, and the National Ignition Facility for fusion burn and high-energy-density science. The science basis requires summing up the pieces we can measure and simulate, which cannot be done without a complete set of tools. Refurbishing weapons with confidence, without testing, is a difficult challenge. Only with high-quality scientists and a complete set of tools, can the US accomplish this program. NIF is a unique element of the Stockpile Stewardship Program because it is the only facility that will allow the experimental study of thermonuclear burn and important regimes of high-energy-density science. Understanding …
Date: September 15, 2000
Creator: Carpenter, J & Warner, B
System: The UNT Digital Library
NIF and science (open access)

NIF and science

The National Ignition Facility (NIF) will have many uses besides its primary mission in the US Department of Energy's Stockpile Stewardship Program. It will provide a broad array of applications to basic science, and will also play an important role in the development of commercial fusion energy.
Date: September 15, 2000
Creator: Carpenter, J & Warner, B
System: The UNT Digital Library
Inertial fusion technology spin-offs-history provides a glimpse of the future (open access)

Inertial fusion technology spin-offs-history provides a glimpse of the future

The development and demonstration of inertial fusion is incredibly challenging because it requires simultaneously controlling and precisely measuring parameters at extreme values in energy, space, and time. The challenges range from building megajoule (10{sup 6} J) drivers that perform with percent-level precision to fabricating targets with submicron specifications to measuring target performance at micron scale (10{sup -6} m) with picosecond (10{sup -12} s) time resolution. Over the past 30 years in attempting to meet this challenge, the inertial fusion community around the world has invented new technologies in lasers, particle beams, pulse power drivers, diagnostics, target fabrication, and other areas. These technologies have found applications in diverse fields of industry and science. Moreover, simply assembling the teams with the background, experience, and personal drive to meet the challenging requirements of inertial fusion has led to spin-offs in unexpected directions, for example, in laser isotope separation, extreme ultraviolet (EUV) lithography for microelectronics, compact and inexpensive radars, advanced laser materials processing, and medical technology. It is noteworthy that more than 40 R&D 100 awards, the ''Oscars of applied research'' have been received by members of the inertial fusion community over this period. Not surprisingly, the inertial fusion community has created many new …
Date: March 7, 2000
Creator: Powell, H
System: The UNT Digital Library
Lasershot peening--a means to strengthen metals (open access)

Lasershot peening--a means to strengthen metals

Lasershot peening is an emerging modern process that impresses a compressive stress into the surfaces of metals, improving their operational lifetime. Almost everyone is familiar with taking a strip of metal or a wire and bending it multiple times until it breaks. In this situation, when the metal is bent, the surface of outer radius is stretched into a tensile state. Under tension, any flaw or micro-crack will grow in size with each bending of the metal until the crack grows through the entire strip, breaking it into two pieces. Flexure of metal components occurs in most applications. The teeth of a transmission gear flex as they deliver torque in a vehicle. Springs and valves flex every time they transfer loads. If fatigue failure from flexing occurs in the tooth of a transmission gear of light or heavy vehicles, in a fan blade of a diesel engine, in shock-absorbers or safety-related supporting structures, significant loss of assets and potentially loss of human life occurs. Lasershot peening, better than any other technique, has the potential to extend the fatigue lifetime of metal components. In the process, the laser generates a high intensity shock wave at the surface of the metal, straining …
Date: March 1, 2000
Creator: Chen, H. L.
System: The UNT Digital Library
NIF facts (open access)

NIF facts

The National Ignition Facility (NIF) will use the world's largest laser to compress and heat BB-sized capsules of fusion fuel to thermo-nuclear ignition. NIF experiments will produce temperatures and densities like those in the Sun or in an exploding nuclear weapon. The experiments will help scientists sustain confidence in the nuclear weapon stockpile without nuclear tests as a unique element of the DOE'S Stockpile Stewardship Program and will produce additional benefits in basic science and fusion energy.
Date: September 8, 2000
Creator: Carpenter, J & Warner, B
System: The UNT Digital Library
Development of techniques in magnetic resonance and structural studies of the prion protein (open access)

Development of techniques in magnetic resonance and structural studies of the prion protein

Magnetic resonance is the most powerful analytical tool used by chemists today. Its applications range from determining structures of large biomolecules to imaging of human brains. Nevertheless, magnetic resonance remains a relatively young field, in which many techniques are currently being developed that have broad applications. In this dissertation, two new techniques are presented, one that enables the determination of torsion angles in solid-state peptides and proteins, and another that involves imaging of heterogenous materials at ultra-low magnetic fields. In addition, structural studies of the prion protein via solid-state NMR are described. More specifically, work is presented in which the dependence of chemical shifts on local molecular structure is used to predict chemical shift tensors in solid-state peptides with theoretical ab initio surfaces. These predictions are then used to determine the backbone dihedral angles in peptides. This method utilizes the theoretical chemicalshift tensors and experimentally determined chemical-shift anisotropies (CSAs) to predict the backbone and side chain torsion angles in alanine, leucine, and valine residues. Additionally, structural studies of prion protein fragments are described in which conformationally-dependent chemical-shift measurements were made to gain insight into the structural differences between the various conformational states of the prion protein. These studies are of …
Date: July 1, 2000
Creator: Bitter, Hans-Marcus L.
System: The UNT Digital Library
Novel nuclear magnetic resonance techniques for studying biological molecules (open access)

Novel nuclear magnetic resonance techniques for studying biological molecules

Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone ({phi}/{psi}) dihedral angles by comparing experimentally determined {sup 13}C{sub a}, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized …
Date: June 1, 2000
Creator: Laws, David D.
System: The UNT Digital Library
Measurement of the neutron spin structure function at low Q{sup 2} (open access)

Measurement of the neutron spin structure function at low Q{sup 2}

The spin dependent cross sections, {sigma}{sup T}{sub 1/2} and {sigma}{sup T}{sub 3/2}, and asymmetries, A{sub {parallel}} and A{sub {perp}}, for {sup 3}He have been measured at the Jefferson Lab's Hall A facility. The inclusive scattering process {sup 3}{vec He}({vec e},e)X was performed for initial beam energies ranging from 0.86 to 5.1 GeV, at a scattering angle of 15.5°. Data includes measurements from the quasielastic peak, resonance region, and the deep inelastic regime. An approximation for the extended Gcrasimov-Drell-Hcarn integral is presented at a 4-momentum transfer Q{sup 2} of 0.2-1.0 GeV{sup 2} . Also presented are results on the performance of the polarized {sup 3}He target. Polarization of {sup 3}He vvas achieved by the process of spin-exchange collisions with optically pumped rubidium vapor. The {sup 3}He polarization was monitored using the NMR technique of adiabatic fast passage (AFP). The average target polarization was approximately 35% and was determined to have a systematic uncertainty of roughly ±4% relative.
Date: August 1, 2000
Creator: Jensen, John Steffen
System: The UNT Digital Library
Study of the Axial Anomaly using the {gamma}p {yields} {pi}{sup +}P{pi}{sup 0} n Reaction Near Threshold (open access)

Study of the Axial Anomaly using the {gamma}p {yields} {pi}{sup +}P{pi}{sup 0} n Reaction Near Threshold

This experiment was one of the first photoproduction experiments performed at Jefferson Lab using the CLAS and the Photon Tagger. The event reconstruction and the photon flux determination procedures have been developed and were proven to work well as we can see from the cross section measurement of the {gamma}p {yields} {pi}{sup +}n reaction. The preliminary results at CLAS for this reaction agree very well with previous world data. The analysis procedure has been developed to analyze the double-pion photoproduction. The differential cross sections for the {gamma}p {yields} P{pi}{sup +}{pi}{sup 0}n reaction have been measured with incident photon energies between 1 and 2 GeV. The Chew-Low extrapolation technique was used to extract the associated {gamma}{pi} {yields} {pi}{pi} cross sections from the differential cross sections. The extrapolation procedure of extracting the pole cross section has been explored. F{sup 3{pi}} was obtained from the {gamma}{pi} {yields} {pi}{pi} cross sections. The results show a momentum dependence of the F{sup 3{pi}} amplitude in which they agree with Holstein's calculation. These measurements test fundamental predictions of low energies QCD. Future work on this analysis will help reduce the uncertainty in F{sup 3{pi}}, and extend the measurements to the lower and higher s regions.
Date: May 1, 2000
Creator: Asavapibhop, Burin
System: The UNT Digital Library
A Scaled Final Focus Experiment for Heavy Ion Fusion (open access)

A Scaled Final Focus Experiment for Heavy Ion Fusion

A one-tenth dimensionally scaled version of a final focus sub-system design for a heavy ion fusion driver is built and tested. By properly scaling the physics parameters that relate particle energy and mass, beam current, beam emittance, and focusing field, the transverse dynamics of a driver scale final focus are replicated in a small laboratory beam. The experiment uses a 95 {micro}A beam of 160 keV Cs{sup +} ions to study the dynamics as the beam is brought to a ballistic focus in a lattice of six quadrupole magnets. Diagnostic stations along the experiment track the evolution of the transverse phase space of the beam. The measured focal spot size is consistent with calculations and the report of the design on which the experiment is based. By uniformly varying the strengths of the focusing fields in the lattice, the chromatic effect of a small energy deviation on the spot size can be reproduced. This is done for {+-}1% and {+-}2% shifts and the changes in the focus are measured. Additionally, a 400 {micro}A beam is propagated through the experiment and partially neutralized after the last magnet using electrons released from a hot tungsten filament. The increase in beam current allows …
Date: September 19, 2000
Creator: MacLaren, Stephan, Alexander
System: The UNT Digital Library
Development of Trivalent Ytterbium Doped Fluorapatites for Diode-Pumped Laser Applications (open access)

Development of Trivalent Ytterbium Doped Fluorapatites for Diode-Pumped Laser Applications

One of the major motivators of this work is the Mercury Project, which is a 1 kW scalable diode-pumped solid-state laser system under development at Lawrence Livermore National Laboratory (LLNL). Major goals include 100 J pulses, 10% wallplug efficiency, 10 Hz repetition rate, and a 5 times diffraction limited beam. To achieve these goals the Mercury laser incorporates ytterbium doped Sr{sub 5}(PO{sub 4}){sub 3}F (S-FAP) as the amplifier gain medium. The primary focus of this thesis is a full understanding of the properties of this material which are necessary for proper design and modeling of the system. Ytterbium doped fluorapatites, which were previously investigated at LLNL, were found to be ideal candidate materials for a high power amplifier systems providing high absorption and emission cross sections, long radiative lifetimes, and high efficiency. A family of barium substituted S-FAP crystals were grown in an effort to modify the pump and emission bandwidths for application to broadband diode pumping and short pulse generation. Crystals of Yb{sup 3+}:Sr{sub 5-x}Ba{sub x}(PO{sub 4}){sub 3}F where x < 1 showed homogeneous lines offering 8.4 nm (1.8 times enhancement) of absorption bandwidth and 6.9 nm (1.4 times enhancement) of emission bandwidth. The gain saturation fluence of Yb:S-FAP …
Date: June 21, 2000
Creator: Bayramian, A. J.
System: The UNT Digital Library
Photoisomerization and photodissociation dynamics of reactive free radicals (open access)

Photoisomerization and photodissociation dynamics of reactive free radicals

The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociative {tilde A}{sup 2}A{sub 1} and {tilde B}{sup 2}A{sub 2} states of CH{sub 3}S have been investigated. At all photon energies, CH{sub 3} + S({sup 3}P{sub j}), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH{sub 3} umbrella mode and the S({sup 3}P{sub j}) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N{sub 2} photofragment. The relatively low fragment rotational excitation …
Date: August 24, 2000
Creator: Bise, Ryan T.
System: The UNT Digital Library
Creep of SiC Hot-Pressed with Al, B, and C (open access)

Creep of SiC Hot-Pressed with Al, B, and C

None
Date: March 31, 2000
Creator: Sixta, M.
System: The UNT Digital Library
Towards Chip Scale Liquid Chromatography and High Throughput Immunosensing (open access)

Towards Chip Scale Liquid Chromatography and High Throughput Immunosensing

This work describes several research projects aimed towards developing new instruments and novel methods for high throughput chemical and biological analysis. Approaches are taken in two directions. The first direction takes advantage of well-established semiconductor fabrication techniques and applies them to miniaturize instruments that are workhorses in analytical laboratories. Specifically, the first part of this work focused on the development of micropumps and microvalves for controlled fluid delivery. The mechanism of these micropumps and microvalves relies on the electrochemically-induced surface tension change at a mercury/electrolyte interface. A miniaturized flow injection analysis device was integrated and flow injection analyses were demonstrated. In the second part of this work, microfluidic chips were also designed, fabricated, and tested. Separations of two fluorescent dyes were demonstrated in microfabricated channels, based on an open-tubular liquid chromatography (OT LC) or an electrochemically-modulated liquid chromatography (EMLC) format. A reduction in instrument size can potentially increase analysis speed, and allow exceedingly small amounts of sample to be analyzed under diverse separation conditions. The second direction explores the surface enhanced Raman spectroscopy (SERS) as a signal transduction method for immunoassay analysis. It takes advantage of the improved detection sensitivity as a result of surface enhancement on colloidal gold, the …
Date: September 21, 2000
Creator: Ni, J.
System: The UNT Digital Library