Target Visualization at the National Ignition Facility (open access)

Target Visualization at the National Ignition Facility

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.
Date: November 21, 2011
Creator: Potter, D
System: The UNT Digital Library
First observation of the Charmless Decay B to K pi0pi0 and Study of its Dalitz Plot Structure (open access)

First observation of the Charmless Decay B to K pi0pi0 and Study of its Dalitz Plot Structure

Results for the first measurement of the inclusive branching and CP asymmetry of the charmless 3-body decay B{sup +} {yields} K{sup +}{pi}{sup 0}{pi}{sup 0} are presented. The analysis uses a data sample with an integrated luminosity of 429.0 fb{sup -1}, recorded by the BABAR detector at the PEP-II asymmetric B Factory. This sample corresponds to 470.9 {+-} 2.8 million B{bar B} pairs. Measurements of the branching fractions (B) and CP asymmetries (A{sub CP}) of some of the intermediate resonances in the K{sup +}{pi}{sup 0}{pi}{sup 0} Dalitz plot are also presented.
Date: March 21, 2012
Creator: Puccio, Eugenia Maria Teresa Irene & /SLAC, /Warwick U.
System: The UNT Digital Library
Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF (open access)

Electron Generation and Transport in Intense Relativistic Laser-Plasma Interactions Relevant to Fast Ignition ICF

The reentrant cone approach to Fast Ignition, an advanced Inertial Confinement Fusion scheme, remains one of the most attractive because of the potential to efficiently collect and guide the laser light into the cone tip and direct energetic electrons into the high density core of the fuel. However, in the presence of a preformed plasma, the laser energy is largely absorbed before it can reach the cone tip. Full scale fast ignition laser systems are envisioned to have prepulses ranging between 100 mJ to 1 J. A few of the imperative issues facing fast ignition, then, are the conversion efficiency with which the laser light is converted to hot electrons, the subsequent transport characteristics of those electrons, and requirements for maximum allowable prepulse this may put on the laser system. This dissertation examines the laser-to-fast electron conversion efficiency scaling with prepulse for cone-guided fast ignition. Work in developing an extreme ultraviolet imager diagnostic for the temperature measurements of electron-heated targets, as well as the validation of the use of a thin wire for simultaneous determination of electron number density and electron temperature will be discussed.
Date: April 21, 2010
Creator: Ma, T
System: The UNT Digital Library
Charge Transfer and Support Effects in Heterogeneous Catalysis (open access)

Charge Transfer and Support Effects in Heterogeneous Catalysis

The kinetic, electronic and spectroscopic properties of two‐dimensional oxide‐supported catalysts were investigated in order to understand the role of charge transfer in catalysis. Pt/TiO{sub 2} nanodiodes were fabricated and used as catalysts for hydrogen oxidation. During the reaction, the current through the diode, as well as its I‐V curve, were monitored, while gas chromatography was used to measure the reaction rate. The current and the turnover rate were found to have the same temperature dependence, indicating that hydrogen oxidation leads to the non‐adiabatic excitation of electrons in Pt. A fraction of these electrons have enough energy to ballistically transport through Pt and overcome the Schottky barrier at the interface with TiO{sub 2}. The yield for this phenomenon is on the order of 10{sup ‐4} electrons per product molecule formed, similar to what has been observed for CO oxidation and for the adsorption of many different molecules. The same Pt/TiO{sub 2} system was used to compare currents in hydrogen oxidation and deuterium oxidation. The current through the diode under deuterium oxidation was found to be greater than under hydrogen oxidation by a factor of three. Weighted by the difference in turnover frequencies for the two isotopes, this would imply a chemicurrent …
Date: December 21, 2011
Creator: Hervier, Antoine
System: The UNT Digital Library
Cellular membrane trafficking of mesoporous silica nanoparticles (open access)

Cellular membrane trafficking of mesoporous silica nanoparticles

This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulf some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand …
Date: June 21, 2012
Creator: Fang, I-Ju
System: The UNT Digital Library