Searches for Natural Supersymmetry in Hadronic Final States with Heavy Flavor at ATLAS (open access)

Searches for Natural Supersymmetry in Hadronic Final States with Heavy Flavor at ATLAS

None
Date: December 13, 2012
Creator: Butler, Bart Clayton & /SLAC, /Stanford U.
System: The UNT Digital Library
Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel (open access)

Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O{sub 2}) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal …
Date: December 13, 2011
Creator: Rieken, Joel
System: The UNT Digital Library
A Search for the Rare Decay B^0 \to gamma gamma (open access)

A Search for the Rare Decay B^0 \to gamma gamma

None
Date: June 13, 2013
Creator: Ruland, Andrew Michael & /U. Texas, Austin /SLAC
System: The UNT Digital Library
Imaging gene expression in real-time using aptamers (open access)

Imaging gene expression in real-time using aptamers

Signal transduction pathways are usually activated by external stimuli and are transient. The downstream changes such as transcription of the activated genes are also transient. Real-time detection of promoter activity is useful for understanding changes in gene expression, especially during cell differentiation and in development. A simple and reliable method for viewing gene expression in real time is not yet available. Reporter proteins such as fluorescent proteins and luciferase allow for non-invasive detection of the products of gene expression in living cells. However, current reporter systems do not provide for real-time imaging of promoter activity in living cells. This is because of the long time period after transcription required for fluorescent protein synthesis and maturation. We have developed an RNA reporter system for imaging in real-time to detect changes in promoter activity as they occur. The RNA reporter uses strings of RNA aptamers that constitute IMAGEtags (Intracellular MultiAptamer GEnetic tags), which can be expressed from a promoter of choice. The tobramycin, neomycin and PDC RNA aptamers have been utilized for this system and expressed in yeast from the GAL1 promoter. The IMAGEtag RNA kinetics were quantified by RT-qPCR. In yeast precultured in raffinose containing media the GAL1 promoter responded faster …
Date: December 13, 2011
Creator: Shin, Il Chung
System: The UNT Digital Library