From First Principles: The Application of Quantum Mechanics to Complex Molecules and Solvated Systems (open access)

From First Principles: The Application of Quantum Mechanics to Complex Molecules and Solvated Systems

None
Date: December 31, 2001
Creator: Freitag, Mark A.
System: The UNT Digital Library
High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection (open access)

High-Throughput Analysis With 96-Capillary Array Electrophoresis and Integrated Sample Preparation for DNA Sequencing Based on Laser Induced Fluorescence Detection

The purpose of this research was to improve the fluorescence detection for the multiplexed capillary array electrophoresis, extend its use beyond the genomic analysis, and to develop an integrated micro-sample preparation system for high-throughput DNA sequencing. The authors first demonstrated multiplexed capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography (MEKC) separations in a 96-capillary array system with laser-induced fluorescence detection. Migration times of four kinds of fluoresceins and six polyaromatic hydrocarbons (PAHs) are normalized to one of the capillaries using two internal standards. The relative standard deviations (RSD) after normalization are 0.6-1.4% for the fluoresceins and 0.1-1.5% for the PAHs. Quantitative calibration of the separations based on peak areas is also performed, again with substantial improvement over the raw data. This opens up the possibility of performing massively parallel separations for high-throughput chemical analysis for process monitoring, combinatorial synthesis, and clinical diagnosis. The authors further improved the fluorescence detection by step laser scanning. A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluorescein is 3 x 10{sup -11} M …
Date: December 31, 2001
Creator: Xue, Gang
System: The UNT Digital Library
Laser Micromachining and Information Discovery Using a Dual Beam Interferometry (open access)

Laser Micromachining and Information Discovery Using a Dual Beam Interferometry

Lasers have proven to be among the most promising tools for micromachining because they can process features down to the size of the laser wavelength (smaller than 1 micrometer) and they provide a non-contact technology for machining. The demand for incorporating in-situ diagnostics technology into the micromachining environment is driven by the increasing need for producing micro-parts of high quality and accuracy. Laser interferometry can be used as an on-line monitoring tool and it is the aim of this work to enhance the understanding and application of Michelson interferometry principle for the in-situ diagnostics of the machining depth on the sub-micron and micron scales. micromachining is done on two different materials and a comprehensive investigation is done to control the width and depth of the machined feature. To control the width of the feature, laser micromachining is done on copper and a detailed analysis is performed. The objective of this experiment is to make a precision mask for sputtering with an array of holes on it using an Nd:YAG laser of 532 nm wavelength. The diameter of the hole is 50 {micro}m and the spacing between holes (the distance between the centers) is 100 {micro}m. Michelson interferometer is integrated with …
Date: December 31, 2001
Creator: Theppakuttaikomaraswamy, Senthil P.
System: The UNT Digital Library
The limit of strength and toughness of steel (open access)

The limit of strength and toughness of steel

The ideal structural steel combines high strength with high fracture toughness. This dissertation discusses the governing principles of strength and toughness, along with the approaches that can be used to improve these properties and the inherent limits to how strong and tough a steel can be.
Date: December 17, 2001
Creator: Guo, Zhen
System: The UNT Digital Library
Investigation of the Peroxovanadate Sol-Gel Process and Characterization of the Gels (open access)

Investigation of the Peroxovanadate Sol-Gel Process and Characterization of the Gels

In general, the peroxovanadate solution sol-gel process can be thought of as consisting of two parts: (1) the decomposition of the peroxo species and (2) cation hydrolysis leading to gelation. By controlling the synthesis conditions, both layered and amorphous compounds can be created. However, the type of water coordination observed in these gels was found to be identical no matter what the long-range order. The current work clarified many of the discrepancies found in the literature and offered much new valuable information. Highlights include the types of vanadium environments present at various stages of hydration, the role of adsorbed water, oxygen exchange from adsorbed water into the gel sites, and the ability to create metastable VMoO solid solution phases. These results could have a variety of impacts on future catalysis research.
Date: December 2001
Creator: Fontenot, Craig Joseph
System: The UNT Digital Library
Application of the Scenario Planning Process - a Case Study: The Technical Information Department at the Lawrence Livermore National Laboratory (open access)

Application of the Scenario Planning Process - a Case Study: The Technical Information Department at the Lawrence Livermore National Laboratory

When the field of modern publishing was on a collision course with telecommunications, publishing organizations had to come up to speed in fields that were, heretofore, completely foreign and technologically forbidding to them. For generations, the technology of publishing centered on offset lithography, typesetting, and photography--fields that saw evolutionary and incremental change from the time of Guttenberg. But publishing now includes making information available over the World Wide Web--Internet publishing--with its ever-accelerating rate of technological change and dependence on computers and networks. Clearly, we need a methodology to help anyone in the field of Internet publishing plan for the future, and there is a well-known, well-tested technique for just this purpose--Scenario Planning. Scenario Planning is an excellent tool to help organizations make better decisions in the present based on what they identify as possible and plausible scenarios of the future. Never was decision making more difficult or more crucial than during the years of this study, 1996-1999. This thesis takes the position that, by applying Scenario Planning, the Technical Information Department at LLNL, a large government laboratory (and organizations similar to it), could be confident that moving into the telecommunications business of Internet publishing stood a very good chance of …
Date: November 26, 2001
Creator: Schuster, J A
System: The UNT Digital Library
Optical Parametric Amplification for High Peak and Average Power (open access)

Optical Parametric Amplification for High Peak and Average Power

Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification …
Date: November 26, 2001
Creator: Jovanovic, I
System: The UNT Digital Library
Electroproduction of Photons and of Pawns on the Proton in Quadrimoment of Transfer Q2=1.0GeV2. Measure Cross Sections and Extraction of Polarizabilities Generalities; Electroproduction de Photons et de Pions sur le Proton au Quadrimoment de Transfert Q2=1.0GeV2. Mesure des Sections Efficaces et Extraction des Polarisabilites Generalisees (open access)

Electroproduction of Photons and of Pawns on the Proton in Quadrimoment of Transfer Q2=1.0GeV2. Measure Cross Sections and Extraction of Polarizabilities Generalities; Electroproduction de Photons et de Pions sur le Proton au Quadrimoment de Transfert Q2=1.0GeV2. Mesure des Sections Efficaces et Extraction des Polarisabilites Generalisees

In hadronic physics, the nucleon structure and the quarks confinement are still topical issues. The neutral pion electroproduction and virtual Compton scattering (VCS) reactions allow us to access new observables that describe this structure. This work is focused on the VCS experiment performed at Jefferson Lab in 1998.
Date: November 6, 2001
Creator: Laveissiere, Geraud
System: The UNT Digital Library
Electroproduction DE Photons ET DE Pions Sur Le Proton AU Quadrimoment DE Transfert Q{Sup 2} = 1.0 Gev{Sup 2} (open access)

Electroproduction DE Photons ET DE Pions Sur Le Proton AU Quadrimoment DE Transfert Q{Sup 2} = 1.0 Gev{Sup 2}

Thesis on the virtual compton scattering experiment in Hall A at Jefferson Lab.
Date: November 1, 2001
Creator: Laveissiere, Geraud
System: The UNT Digital Library
Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing (open access)

Estimation of fracture porosity in an unsaturated fractured welded tuff using gas tracer testing

None
Date: October 1, 2001
Creator: Freifeld, Barry
System: The UNT Digital Library
Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study (open access)

Effect of surface structure on catalytic reactions: A sum frequency generation surface vibrational spectroscopy study

In the results discussed above, it is clear that Sum Frequency Generation (SFG) is a unique tool that allows the detection of vibrational spectra of adsorbed molecules present on single crystal surfaces under catalytic reaction conditions. Not only is it possible to detect active surface intermediates, it is also possible to detect spectator species which are not responsible for the measured turnover rates. By correlating high-pressure SFG spectra under reaction conditions and gas chromatography (GC) kinetic data, it is possible to determine which species are important under reaction intermediates. Because of the flexibility of this technique for studying surface intermediates, it is possible to determine how the structures of single crystal surfaces affect the observed rates of catalytic reactions. As an example of a structure insensitive reaction, ethylene hydrogenation was explored on both Pt(111) and Pt(100). The rates were determined to be essentially the same. It was observed that both ethylidyne and di-{sigma} bonded ethylene were present on the surface under reaction conditions on both crystals, although in different concentrations. This result shows that these two species are not responsible for the measured turnover rate, as it would be expected that one of the two crystals would be more active …
Date: September 7, 2001
Creator: McCrea, Keith R.
System: The UNT Digital Library
Focus on NIF September 2001 (open access)

Focus on NIF September 2001

As of the end of August, the National Ignition Facility (NIF) is satisfactorily meeting its technical performance, cost and schedule milestones. Hensel Phelps Construction Company (HPCC) turned over the Laser Building to the Beampath Infrastructure System (BIS) Commissioning and Operations team for beneficial occupancy.
Date: September 5, 2001
Creator: Warner, B
System: The UNT Digital Library
Novel joining of dissimilar ceramics in the Si{sub 3}N{sub 4}-Al{sub 2}O{sub 3} system using polytypoid functional gradients (open access)

Novel joining of dissimilar ceramics in the Si{sub 3}N{sub 4}-Al{sub 2}O{sub 3} system using polytypoid functional gradients

A unique approach to crack-free joining of heterogeneous ceramics is demonstrated by the use of sialon polytypoids as Functionally Graded Materials (FGM) as defined by the phase diagram in the system, Si3N4-Al2O3. Polytypoids in the Al2O3-Si3N4 system offer a path to compatibility for such heterogeneous ceramics. The first part of the dissertation describes successful hot press sintering of multilayered FGM's with 20 layers of thickness 500 mm each. Transmission Electron Microscopy was used to identify the polytypoids at the interfaces of different areas of the joint. It has been found that the 15R polytypoid was formed in the Al2O3-contained layers and the 12H polytypoid was formed in the Si3N4-contained layers. The second part of the dissertation discusses the mechanical properties of these polytypoidally joined Si3N4-Al2O3. The thermal stresses of this FGM junction were analyzed using a finite element analysis program (FEAP) taking into account both coefficient of thermal expansion (CTE) and modulus variations. From this analysis, the result showed a dramatic decrease in radial, axial and hoop stresses as the FGM changes from three layers to 20 graded layers. Scaling was considered, showing that the graded transition layer should constitute about 75 percent or more of the total sample thickness …
Date: August 22, 2001
Creator: Lee, Caroline Sunyong
System: The UNT Digital Library
Accelerator Mass Spectrometry Measurements of Plutonium in Sediment and Seawater from the Marshall Islands (open access)

Accelerator Mass Spectrometry Measurements of Plutonium in Sediment and Seawater from the Marshall Islands

During the summer 2000, I was given the opportunity to work for about three months as a technical trainee at Lawrence Livermore National Laboratory, or LLNL as I will refer to it hereafter. University of California runs this Department of Energy laboratory, which is located 70 km east of San Francisco, in the small city of Livermore. This master thesis in Radioecology is based on the work I did here. LLNL, as a second U.S.-facility for development of nuclear weapons, was built in Livermore in the beginning of the 1950's (Los Alamos in New Mexico was the other one). It has since then also become a 'science center' for a number of areas like magnetic and laser fusion energy, non-nuclear energy, biomedicine, and environmental science. The Laboratory's mission has changed over the years to meet new national needs. The following two statements were found on the homepage of LLNL (http://www.llnl.gov), at 2001-03-05, where also information about the laboratory and the scientific projects that takes place there, can be found. 'Our primary mission is to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide'. 'Our goal is to …
Date: August 1, 2001
Creator: Leisvik, M & Hamilton, T
System: The UNT Digital Library
Dualities in M-theory and Born-Infeld Theory (open access)

Dualities in M-theory and Born-Infeld Theory

We discuss two examples of duality. The first arises in the context of toroidal compactification of the discrete light cone quantization of M-theory. In the presence of nontrivial moduli coming from the M-theory three form, it has been conjectured that the system is described by supersymmetric Yang-Mills gauge theory on a noncommutative torus. We are able to provide evidence for this conjecture, by showing that the dualities of this M-theory compactification, which correspond to T-duality in Type IIA string theory, are also dualities of the noncommutative supersymmetric Yang-Mills description. One can also consider this as evidence for the accuracy of the Matrix Theory description of M-theory in this background. The second type of duality is the self-duality of theories with U(1) gauge fields. After discussing the general theory of duality invariance for theories with complex gauge fields, we are able to find a generalization of the well known U(1) Born-Infeld theory that contains any number of gauge fields and which is invariant under the maximal duality group. We then find a supersymmetric extension of our results, and also show that our results can be extended to find Born-Infeld type actions in any even dimensional spacetime.
Date: August 1, 2001
Creator: Brace, Daniel, M
System: The UNT Digital Library
High Precision Spectroscopy of Lambda-Hypernuclei by (e, e' K{sup +}) reaction and gamma-ray measurement (open access)

High Precision Spectroscopy of Lambda-Hypernuclei by (e, e' K{sup +}) reaction and gamma-ray measurement

Hypernuclei, with one nucleon converted into a hyperon and coupled back to the residual nuclear core, provide a new probe to study the hyperon-nucleon interaction and an additional strangeness degree of freedom to test the limit of our conventional nuclear models in solving the many body system. The First Lambda electroproduction experiment E89009(HNSS) at JLAB focusing on the Lambda hypernuclear spectroscopy in p-shell achieved the best resolution( FWHM: 500-600 keV) ever reached in this field. The unnatural parity (spin-flip) states were observed for the first time on the 12 / Lambda B missing mass spectrum. The detailed hypernuclear structure of 9 / Lambda Be produced through (k{sup -}, pi{sup -}) reaction in BNL-AGS, was studied with the hypernuclear gamma-ray spectroscopy by using a large acceptance germanium detector (Hyperball) in experiment E-930.
Date: August 1, 2001
Creator: Zhu, Xiaofeng
System: The UNT Digital Library
High-Tc SQUIDs: Noise and applications (open access)

High-Tc SQUIDs: Noise and applications

None
Date: August 1, 2001
Creator: Cho, Hsiao-Mei
System: The UNT Digital Library
Performance of Planted Herbaceous Species in Longleaf Pine (Pinus palustris Mill.) Plantations: Overstory Effects of Competition and Needlefall (open access)

Performance of Planted Herbaceous Species in Longleaf Pine (Pinus palustris Mill.) Plantations: Overstory Effects of Competition and Needlefall

Research to determine the separate effects of above-ground and below-ground competition and needlefall of over-story pines on under-story plant performance. Periodic monitoring of over-story crown closure, soil water content, temperature, and nutrients were conducted. Results indicate competition for light had a more determental effect on performance of herbaceous species in longleaf pine plantations than that resulting from competition for below-ground resources.
Date: July 3, 2001
Creator: Dagley, Christa Marie
System: The UNT Digital Library
Inertial Confinement Fusion Annual Report 1999 (open access)

Inertial Confinement Fusion Annual Report 1999

The ICF Program has undergone a significant change in 1999 with the decommissioning of the Nova laser and the transfer of much of the experimental program to the OMEGA laser at the University of Rochester. The Nova laser ended operations with the final experiment conducted on May 27, 1999. This marked the end to one of DOE's most successful experimental facilities. Since its commissioning in 1985, Nova performed 13,424 experiments supporting ICF, Defense Sciences, high-power laser research, and basic science research. At the time of its commissioning, Nova was the world's most powerful laser. Its early experiments demonstrated that 3{omega} light could produce high-drive, low-preheat environment required for indirect-drive ICE. In the early 1990s, the technical program on Nova for indirect drive ignition was defined by the Nova technical contract established by National Academy Review of ICF in 1990. Successful completion of this research program contributed significantly to the recommendation by the ICF Advisory Committee in 1995 to proceed with the construction of the National Ignition Facility? Nova experiments also demonstrated the utility of high-powered lasers for studying the physics of interest to Defense Sciences. Now, high-powered lasers along with pulsed-power machines are the principal facilities for studying high energy …
Date: July 1, 2001
Creator: Kauffman, R.
System: The UNT Digital Library
National Ignition Facility (NIF) Focus Programs July 2001 Volume 1, No. 3 (open access)

National Ignition Facility (NIF) Focus Programs July 2001 Volume 1, No. 3

None
Date: July 1, 2001
Creator: Warner, B
System: The UNT Digital Library
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique (open access)

The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. It was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. …
Date: June 27, 2001
Creator: Sutherland, Kevin Jerome
System: The UNT Digital Library
Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices (open access)

Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn, Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.
Date: June 27, 2001
Creator: Petersen, Michael David
System: The UNT Digital Library
Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214 (open access)

Thermodynamic Critical Field and Superconducting Fluctuation of Vortices for High Temperature Cuprate Superconductor: La-214

Thermodynamics has been studied systematically for the high temperature cuprate superconductor La{sub 2-x}Sr{sub x}CuO{sub 4-{delta}}, La-214, in the entire superconductive region from strongly underdoped to strongly overdoped regimes. Magnetization studies with H {parallel} c have been made in order to investigate the changes in free energy of the system as the number of carriers is reduced. Above the superconducting transition temperature, the normal-state magnetization exhibits a two-dimensional Heisenberg antiferromagnetic behavior. Below T{sub c}, magnetization data are thermodynamically reversible over large portions of the H-T plane, so the free energy is well defined in these regions. As the Sr concentration is varied over the wide range from 0.060 (strongly underdoped) to 0.234 (strongly overdoped), the free energy change goes through a maximum at the optimum doped in a manner similar to the T{sub c0} vs. x curve. The density of states, N(0), remains nearly constant in the overdoped and optimum doped regimes, taking a broad maximum around x = 0.188, and then drops abruptly towards zero in the underdoped regime. The La{sub 2-x}Sr{sub x}CuO{sub 4} (La-214) system displays the fluctuating vortex behavior with the characteristic of either 2D or 3D fluctuations as indicated by clearly identifiable crossing points T* close to …
Date: June 25, 2001
Creator: Finnemore, Douglas K.
System: The UNT Digital Library