A/M Area DNAPL Characterization Report for Cores Collected in FY97 and 1Q98 and 2Q98 (open access)

A/M Area DNAPL Characterization Report for Cores Collected in FY97 and 1Q98 and 2Q98

Drilling activities were conducted in FY97 and FY98 in the A/M Area to further identify areas of pure phase DNAPL below the water table. The purpose of the work was to further understand the subsurface contaminant distribution and to identify locations below the water table where aggressive DNAPL remediation technologies should be pursued.
Date: February 20, 2001
Creator: Jerome, K. M.
System: The UNT Digital Library
FY97-99 Vegetation Analysis of ALCD Soil Amended Landfill Cover Plots (open access)

FY97-99 Vegetation Analysis of ALCD Soil Amended Landfill Cover Plots

None
Date: November 21, 2000
Creator: Dwyer, S. F.; Wolters, G. L. & Newman, G.
System: The UNT Digital Library
Task III: UCSD/DIII-D/Textor FY-97-98 Accomplishments (open access)

Task III: UCSD/DIII-D/Textor FY-97-98 Accomplishments

OAK (B204) Task III: UCSD/DIII-D/Textor FY-97-98 Accomplishments. A comprehensive report on the physics of pump limiters and particularly, the characterization of ALT-II, was published in Nuclear Fusion, bringing the project to a closure. The performance of the toroidal pump limiter was characterized under full auxiliary heating of 7 MW of NBI and ICRH and full pumping, as stated in the project milestones. Relevant highlights are: (1) Pumping with ALT-II allows for density control. (2) The achieved exhaust efficiency is 4% during NBI operation and near 2% during OH or ICRH operation. (3) We have shown that an exhaust efficiency of 2% is sufficient to satisfy the ash removal requirements of fusion reactors. (4) The plasma particle efflux and the pumped flux both increase with density and heating power. (5) The particle confinement time is less than the energy confinement time by a factor of 4. In summary, pumped belt limiters could provide the density control and ash exhaust requirements of fusion reactors.
Date: September 5, 2000
Creator: Boedo, J.A.
System: The UNT Digital Library
FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014 (open access)

FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014

The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas. During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.
Date: May 25, 2000
Creator: Bayramian, A.; Beach, R.; Bibeau, C.; Chanteloup, J.-C.; Ebbers, C.; Emanuel, M. et al.
System: The UNT Digital Library
FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014 (open access)

FY96-98 Summary Report Mercury: Next Generation Laser for High Energy Density Physics SI-014

The scope of the Mercury Laser project encompasses the research, development, and engineering required to build a new generation of diode-pumped solid-state lasers for Inertial Confinement Fusion (ICF). The Mercury Laser will be the first integrated demonstration of laser diodes, crystals, and gas cooling within a scalable laser architecture. This report is intended to summarize the progress accomplished during the first three years of the project. Due to the technological challenges associated with production of 900 nm diode-bars, heatsinks, and high optical-quality Yb:S-FAP crystals, the initial focus of the project was primarily centered on the R&D in these three areas. During the third year of the project, the R&D continued in parallel with the development of computer codes, partial activation of the laser, component testing, and code validation where appropriate.
Date: May 23, 2000
Creator: Bayramian, A.; Beach, R.; Bibeau, C.; Chanteloup, J.; Ebbers, C.; Emanuel, M. et al.
System: The UNT Digital Library