Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report (open access)

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

In this report, initial results pertaining to the synthesis molybdenum clusters and characterization using absorption, optical microscopy, and x-ray powder diffraction are discussed. The synthesis was performed according to literature [1], but results from x-ray powder diffraction indicate that the synthesis did not give the desired compound. The absorption and optical microscopy indicate that the compound synthesized has properties similar to the desired Mo{sub 6}Cl{sub 12} clusters [2,3], so it is unclear as of yet what happened. The sample cell for performing high temperature spectroscopy on thin films of the molybdenum clusters at elevated temperature in a controlled gas environment was designed and an initial prototype was built.
Date: January 1, 2003
Creator: Baker, Gregory L.; Ghosh, Ruby N. & III, D.J. Osborn
System: The UNT Digital Library
Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report (open access)

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

More Mo{sub 6}Cl{sub 12} has been synthesized. We have found that previous ambiguous x-ray powder diffraction results are due to disruption of long-range order in the crystals during the heating stage of the synthesis. The quartz cell heaters have been redesigned and are able to heat the substrate. Initial films have been fabricated and are currently under investigation to determine optimal deposition conditions.
Date: May 1, 2003
Creator: Baker, Gregory L.; Ghosh, Ruby N. & III, D.J. Osborn
System: The UNT Digital Library
Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report (open access)

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Alkali salts of Mo{sub 6}Cl{sub 12} were synthesized and heated to 280 C for one hour in air. Optical measurements of the thermally treated material confirm the potential of the salts as lumophores in high temperature fiber optic sensors. In addition sol-gel films containing Mo{sub 6}Cl{sub 12} were dip coated on quartz substrates and heated at 200 C for one hour. Conditions were developed for successfully immobilizing monomeric complexes that are compatible with sol-gel processing.
Date: July 1, 2004
Creator: Baker, Gregory L.; Ghosh, Ruby N. & III, D.J. Osborn
System: The UNT Digital Library
Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report (open access)

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

A reflection mode fiber optic oxygen sensor is being developed that can operate at high temperatures for power plant applications. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. Two critical materials issues are the cluster's ability to withstand high temperatures when immobilized in a porous the sol-gel support, and whether after heating to high temperatures, the sol-gel matrix maintains a high and constant permeability to oxygen to support rapid quenching of luminescence. We used a composite materials approach to prepare stable sensing layers on optical fibers. We dispersed 60 w/w% of a pre-cured sol-gel composite containing the potassium salt of molybdenum clusters (K{sub 2}Mo{sub 6}Cl{sub 14}) into a sol-gel binder solution, and established the conditions necessary for deposition of sol-gel films on optical fibers and planar substrates. The fiber sensor has an output signal of 5 nW when pumped with an inexpensive commercial 365 nm ultraviolet light emitting diode (LED). Quenching of the sensor signal by oxygen was observed up to a gas temperature of 175 C with no degradation of the oxygen permeability of the composite after high temperature cycling. On planar substrates the cluster containing composite responds …
Date: July 1, 2005
Creator: Baker, Gregory L.; Ghosh, Ruby N.; III, D.J. Osborn & Zhang, Po
System: The UNT Digital Library
Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report (open access)

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. One of the critical materials issues is to demonstrate that the luminescent cluster immobilized in the sol-gel porous support can withstand high temperature. At the same time the sol-gel matrix must have a high permeability to oxygen. Using a potassium salt of the molybdenum clusters, K{sub 2}Mo{sub 6}Cl{sub 14}, we have established the conditions necessary for deposition of optical quality sol-gel films. From spectroscopic measurements of the film we have shown that the cluster luminescence is stable following heat cycling of 54 hours at 200 C. Quenching of a factor of 1.5X between pure nitrogen and 21% oxygen was observed from in-situ measurements of films heated directly at 200 C. An automated system for characterizing fiber optic oxygen sensors up to 220 C with a temporal resolution better than 10 s is under construction. We estimate a signal of 6 x 10{sup 8} photons/s after complete quenching in 21% oxygen. These are promising results for a high temperature fiber optical oxygen …
Date: April 1, 2005
Creator: Baker, Gregory L.; Ghosh, Ruby N.; III, D.J. Osborn & Zhang, Po
System: The UNT Digital Library
Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report (open access)

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. High temperature measurements of the emission of clusters in sol gel films show that the luminescence intensity from the films follow a 1/T relationship from room temperature to 150 C, and then declines at a slower rate at higher temperatures. The large number of photons available at 230 C is consistent with simple low cost optics for fiber optic probes based on the emission from clusters in sol gel films.
Date: October 1, 2004
Creator: Baker, Gregory L.; Ghosh, Ruby N. & III, D.J. Osborn
System: The UNT Digital Library
Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report (open access)

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. One of the critical materials issues is to demonstrate that the luminescent cluster immobilized in the sol-gel porous support can withstand high temperature. At the same time the sol-gel matrix must have a high permeability to oxygen. Using a potassium salt of the molybdenum clusters, K{sub 2}Mo{sub 6}Cl{sub 14}, we have established the conditions necessary for deposition of optical quality sol-gel films. From spectroscopic measurements of the film we have shown that the cluster luminescence is stable following heat cycling of 1 hour at 250 C. Quenching of a factor of 4X between pure nitrogen and 21% oxygen was observed for films cured directly at 200 C. These are promising results for a high temperature fiber optical oxygen sensor based on molybdenum chloride clusters.
Date: January 1, 2005
Creator: Baker, Gregory L.; Ghosh, Ruby N.; III, D.J. Osborn & Zhang, Po
System: The UNT Digital Library
Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report (open access)

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

Mo{sub 6}Cl{sub 12}, a cluster compound whose luminescence depends on the ambient concentration of oxygen, is the basis for a real-time oxygen sensor for combustion applications. Previously, the properties of Mo{sub 6}Cl{sub 12} have largely been studied at room temperature; these studies have now been extended to 200 C. Optical microscopy shows that Mo{sub 6}Cl{sub 12} undergoes a steady change in color as it is heated from room temperature to 200 C, changing from canary yellow to crimson and then back to canary yellow. Concurrent thermal gravimetric analyses show a small weight loss for Mo{sub 6}Cl{sub 12} that is consistent with loss of water or HCl from the clusters. These changes are reversible. Absorption and fluorescence emission spectroscopy of Mo{sub 6}Cl{sub 12} heated to 200 C for two hours shows no change in the photophysical parameters compared to the control sample that was not heat cycled.
Date: July 1, 2003
Creator: Baker, Gregory L.; Ghosh, Ruby N. & III, D.J. Osborn
System: The UNT Digital Library
Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report (open access)

Fiber Optical Micro-Detectors for Oxygen Sensing in Power Plants Progress Report

A reflection mode fiber optic oxygen sensor that can operate at high temperatures for power plant applications is being developed. The sensor is based on the {sup 3}O{sub 2} quenching of the red emission from hexanuclear molybdenum chloride clusters. The luminescence of Mo{sub 6}Cl{sub 12} immobilized in a sol-gel matrix was measured as a function of heater temperature up to 200 C, in an inert environment. While the luminescence decreased with temperature, the integrated intensity at 200 C should be sufficient to enable detection of the luminescence in a fiber geometry. Previously we found that aging Mo{sub 6}Cl{sub 12} at temperatures above 250 C converts the canary yellow Mo{sub 6}Cl{sub 12} to a non-luminescent gray solid. Optical and thermal aging experiments show that the alkali metal salts of Mo{sub 6}Cl{sub 12} have higher thermal stabilities and remain luminescent after aging at 280 C.
Date: April 1, 2004
Creator: Baker, Gregory L.; Ghosh, Ruby N. & III, D.J. Osborn
System: The UNT Digital Library