Active Cathodes for Super-High Power Density Solid Oxide Fuel Cells Through Space Charge Effects Quarterly Report: July-September 2003 (open access)

Active Cathodes for Super-High Power Density Solid Oxide Fuel Cells Through Space Charge Effects Quarterly Report: July-September 2003

This report summarizes the work done during the fourth quarter of the project. Effort was directed in two areas, namely, continued further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge, and its relationship to cathode polarization; and fabrication of samaria-doped ceria porous (SDC). The work on the model development involves calculation of the effect of space charge on transport through porous bodies. Three specific cases have been examined: (1) Space charge resistivity greater than the grain resistivity, (2) Space charge resistivity equal to the grain resistivity, and (3) Space charge resistivity lower than the grain resistivity. The model accounts for transport through three regions: the bulk of the grain, the space charge region, and the structural part of the grain boundary. The effect of neck size has been explicitly incorporated. In future work, the effective resistivity will be incorporated into the effective cathode polarization resistance. The results will then be compared with experiments.
Date: December 12, 2003
Creator: Virkar, Anil V.
System: The UNT Digital Library