Two Complementary Strategies for New Physics Searches at Lepton Colliders (open access)

Two Complementary Strategies for New Physics Searches at Lepton Colliders

In this thesis I present two complementary strategies for probing beyond-the-Standard Model physics using data collected in e{sup +}e{sup -} collisions at lepton colliders. One strategy involves searching for effects at low energy mediated by new particles at the TeV mass scale, at which new physics is expected to manifest. Several new physics scenarios, including Supersymmetry and models with leptoquarks or compositeness, may lead to observable rates for charged lepton-flavor violating processes, which are forbidden in the Standard Model. I present a search for lepton-flavor violating decays of the {Upsilon}(3S) using data collected with the BABAR detector. This study establishes the 90% confidence level upper limits BF({Upsilon}(3S) {yields} e{tau}) < 5.0 x 10{sup -6} and BF({Upsilon}(3S) {yields} {mu}{tau}) < 4.1 x 10{sup -6} which are used to place constraints on new physics contributing to lepton-flavor violation at the TeV mass scale. An alternative strategy is to increase the collision energy above the threshold for new particles and produce them directly. I discuss research and development efforts aimed at producing a vertex tracker which achieves the physics performance required of a high energy lepton collider. A small-scale vertex tracker prototype is constructed using Silicon sensors of 50 {mu}m thickness and tested …
Date: July 6, 2009
Creator: Hooberman, Benjamin Henry
System: The UNT Digital Library
TEMPORARILY ALLOYING TITANIUM TO FACILITATE FRICTION STIR WELDING (open access)

TEMPORARILY ALLOYING TITANIUM TO FACILITATE FRICTION STIR WELDING

While historically hydrogen has been considered an impurity in titanium, when used as a temporary alloying agent it promotes beneficial changes to material properties that increase the hot-workability of the metal. This technique known as thermohydrogen processing was used to temporarily alloy hydrogen with commercially pure titanium sheet as a means of facilitating the friction stir welding process. Specific alloying parameters were developed to increase the overall hydrogen content of the titanium sheet ranging from commercially pure to 30 atomic percent. Each sheet was evaluated to determine the effect of the hydrogen content on process loads and tool deformation during the plunge phase of the friction stir welding process. Two materials, H-13 tool steel and pure tungsten, were used to fabricate friction stir welding tools that were plunged into each of the thermohydrogen processed titanium sheets. Tool wear was characterized and variations in machine loads were quantified for each tool material and weld metal combination. Thermohydrogen processing was shown to beneficially lower plunge forces and stabilize machine torques at specific hydrogen concentrations. The resulting effects of hydrogen addition to titanium metal undergoing the friction stir welding process are compared with modifications in titanium properties documented in modern literature. Such comparative …
Date: May 6, 2009
Creator: Hovanski, Yuri
System: The UNT Digital Library
Radiative Leptonic B Decays (open access)

Radiative Leptonic B Decays

We present the results of a search for B{sup +} meson decays into {gamma}{ell}{sup +}{nu}{sub {ell}}, where {ell} = e,{mu}. We use a sample of 232 million B{bar B} meson pairs recorded at the {Upsilon}(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction {Delta}{beta} in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the {Upsilon}(4S) center-of-mass frame. We find {Delta}{Beta}(B{sup +} {yields} {gamma}{ell}{sup +}{nu}{sub {ell}}) = (-0.3{sub 1.5}{sup +1.3}(statistical){sub -0.6}{sup +0.6}(systematic) {+-} 0.1(theoretical)) x 10{sup -6}, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10{sup -6} for a prior at in amplitude, and 2.3 x 10{sup -6} for a prior at in branching fraction.
Date: October 6, 2008
Creator: Chen, Edward Tann & /Caltech
System: The UNT Digital Library
B to (rho/omega) gamma at BaBar (open access)

B to (rho/omega) gamma at BaBar

This document describes the measurements of the branching fractions and isospin violations of the radiative electroweak penguin decays B {yields} ({rho}/{omega}){gamma} at the asymmetric-energy e{sup +}e{sup -} PEP-II collider with the BABAR detector. Together with the previously measured branching fractions of the decays B {yields} K*{gamma} the ratio of CKM-matrix elements |V{sub td}/V{sub ts}| are extracted and the length of the far side of the unitarity triangle is determined.
Date: February 6, 2008
Creator: Koeneke, Karsten
System: The UNT Digital Library
The Relationships between Weight Functions, Geometric Functions,and Compliance Functions in Linear Elastic Fracture Mechanics (open access)

The Relationships between Weight Functions, Geometric Functions,and Compliance Functions in Linear Elastic Fracture Mechanics

Linear elastic fracture mechanics is widely used in industry because it established simple and explicit relationships between the permissible loading conditions and the critical crack size that is allowed in a structure. Stress intensity factors are the above-mentioned functional expressions that relate load with crack size through geometric functions or weight functions. Compliance functions are to determine the crack/flaw size in a structure when optical inspection is inconvenient. As a result, geometric functions, weight functions and compliance functions have been intensively studied to determine the stress intensity factor expressions for different geometries. However, the relations between these functions have received less attention. This work is therefore to investigate the intrinsic relationships between these functions. Theoretical derivation was carried out and the results were verified on single-edge cracked plate under tension and bending. It is found out that the geometric function is essentially the non-dimensional weight function at the loading point. The compliance function is composed of two parts: a varying part due to crack extension and a constant part from the intact structure if no crack exists. The derivative of the compliance function at any location is the product of the geometric function and the weight function at the evaluation …
Date: February 6, 2007
Creator: Yuan, Rong
System: The UNT Digital Library
Rare-earth transition-metal intermetallics: Structure-bonding-property relationships (open access)

Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe{sub 13-x}Si{sub x} system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re{sub 2-x}Fe{sub 4}Si{sub 14-y} and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi{sub 2}: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb{sub 3}Zn{sub 3.6}Al{sub 7.4}: Partially ordered structure of Tb{sub 3}Zn{sub 3.6}Al{sub 7.4} compound provides new insights …
Date: May 6, 2006
Creator: Han, M.K.
System: The UNT Digital Library
Structure and function evolution of thiolate monolayers on gold (open access)

Structure and function evolution of thiolate monolayers on gold

None
Date: May 6, 2006
Creator: Edwards, Grant Alvin
System: The UNT Digital Library
Spin distribution in preequilibrium reactions for 48Ti + n. (open access)

Spin distribution in preequilibrium reactions for 48Ti + n.

Cross section measurements were made of prompt {gamma}-ray production as a function of incident neutron energy on a {sup 48}Ti sample. Partial {gamma}-ray cross sections for transitions in {sup 45-48}Ti, {sup 44-48}Sc, and {sup 42-45}Ca have been determined. Energetic neutrons were delivered by the Los Alamos National Laboratory spallation neutron source located at the LANSCE/WNR facility. The prompt-reaction {gamma} rays were detected with the large-scale Compton-suppressed germanium array for neutron induced excitations (GEANIE). Neutron energies were determined by the time-of-flight technique. The {gamma}-ray excitation functions were converted to partial {gamma}-ray cross sections taking into account the dead-time correction, target thickness, detector efficiency and neutron flux (monitored with an in-line fission chamber). The data are presented for neutron energies E{sub n} between 1 to 200 MeV. These results are compared with model calculations which include compound nuclear and pre-equilibrium emission. The model calculations are performed using the STAPRE reaction code for E{sub n} up to 20 MeV and the GNASH reaction code for E{sub n} up to 120 MeV. Using the GNASH reaction code the effect of the spin distribution in preequilibrium reactions has been investigated. The preequilibrium reaction spin distribution was calculated using the quantum mechanical theory of Feshbach, Kerman, …
Date: April 6, 2005
Creator: Dashdorj, D
System: The UNT Digital Library
Electroproduction of Photons and of Pawns on the Proton in Quadrimoment of Transfer Q2=1.0GeV2. Measure Cross Sections and Extraction of Polarizabilities Generalities; Electroproduction de Photons et de Pions sur le Proton au Quadrimoment de Transfert Q2=1.0GeV2. Mesure des Sections Efficaces et Extraction des Polarisabilites Generalisees (open access)

Electroproduction of Photons and of Pawns on the Proton in Quadrimoment of Transfer Q2=1.0GeV2. Measure Cross Sections and Extraction of Polarizabilities Generalities; Electroproduction de Photons et de Pions sur le Proton au Quadrimoment de Transfert Q2=1.0GeV2. Mesure des Sections Efficaces et Extraction des Polarisabilites Generalisees

In hadronic physics, the nucleon structure and the quarks confinement are still topical issues. The neutral pion electroproduction and virtual Compton scattering (VCS) reactions allow us to access new observables that describe this structure. This work is focused on the VCS experiment performed at Jefferson Lab in 1998.
Date: November 6, 2001
Creator: Laveissiere, Geraud
System: The UNT Digital Library
Use of a Superconducting Tunnel Junction for X-Ray Fluorescence Spectroscopy (open access)

Use of a Superconducting Tunnel Junction for X-Ray Fluorescence Spectroscopy

A superconducting tunnel junction (STJ) in combination with a superconducting absorber of radiation may function as a highly resolving x-ray spectrometer. Electronic excitations, or quasiparticles, are created when a superconductor absorbs an x ray and are detected as an excess tunnel current through the junction. The number of quasiparticles created and the magnitude of the excess current is proportional to the energy of the absorbed x ray. This is similar to existing semiconductor-based spectrometers that measure electron-hole pairs, but with 1000 times more excitations. The energy measurement therefore can be up to 30 times more precise with a superconducting detector than with a semiconductor detector. This work describes the development and testing of an STJ spectrometer design for x-ray fluorescence applications. First, the basic principles of the STJ spectrometer are explained. This is followed by detailed simulations of the variance in the number of quasiparticles produced by absorption of an x ray. This variance is inherent in the detector and establishes an upper limit on the resolving power of the spectrometer. These simulations include effects due to the materials used in the spectrometer and to the multilayer structure of the device. Next, the spectrometer is characterized as functions of operating …
Date: March 6, 2001
Creator: Hiller, L
System: The UNT Digital Library