Frictional behavior of automotive brake materials under wet and dry conditions (open access)

Frictional behavior of automotive brake materials under wet and dry conditions

The purpose of this effort was to develop an improved understanding of the relationship between the structure and frictional behavior of materials in the disc brake/rotor interface with a view toward improving the performance of automotive disc brakes. The three tasks involved in this Cooperative Research and Development Agreement (CRADA) were as follows: Task 1. Investigation of Brake Pads and Rotors. Characterize surface features of worn brake pads and rotors, with special attention to the transfer film which forms on them during operation. Ford to supply specimens for examination and other supporting information. Task 2. Effects of Atmosphere and Repeated Applications on Brake Material Friction. Conduct pin-on-disk friction tests at ORNL under controlled moisture levels to determine effects of relative humidity on frictional behavior of brake pad and rotor materials. Conduct limited tests on the characteristics of friction under application of repeated contacts. Task 3. Comparison of Dynamometer Tests with Laboratory Friction Tests. Compare ORNL friction data with Ford dynamometer test data to establish the degree to which the simple bench tests can be useful in helping to understand frictional behavior in full-scale brake component tests. This final report summarizes work performed under this CRADA.
Date: December 15, 1996
Creator: Blau, P.J.; Martin, R.L.; Weintraub, M.H.; Jang, Ho & Donlon, W.
System: The UNT Digital Library
New generation detonics (open access)

New generation detonics

Modern theory is being used to accelerate the development of new high performance explosive molecules. Combining quantum chemistry calculations with synthesis of promising candidate molecules may enable the advance of the state of the art in this field by more than 50 years. We have established a high explosive performance prediction code by linking the thermochemical code CHEETAH with the ab initio electronic structure code GAUSSIAN and the molecular packing code MOLPAK. GAUSSIAN is first used to determine the shape of the molecule and its binding energy; the molecules are then packed together into a low energy configuration by MOLPAK. Finally, CHEETAH is used to transform the crystal energy and density into explosive performance measures such as detonation velocity, pressure, and energy. Over 70 target molecules have been created, and several of these show promise in combining performance, chemical stability, and ease of synthesis.
Date: December 15, 1996
Creator: Souers, P. C.
System: The UNT Digital Library