Computation at the edge of chaos: Phase transition and emergent computation (open access)

Computation at the edge of chaos: Phase transition and emergent computation

In order for computation to emerge spontaneously and become an important factor in the dynamics of a system, the material substrate must support the primitive functions required for computation: the transmission, storage, and modification of information. Under what conditions might we expect physical systems to support such computational primitives This paper presents research on Cellular Automata which suggests that the optimal conditions for the support of information transmission, storage, and modification, are achieved in the vicinity of a phase transition. We observe surprising similarities between the behaviors of computations and systems near phase-transitions, finding analogs of computational complexity classes and the Halting problem within the phenomenology of phase-transitions. We conclude that there is a fundamental connection between computation and phase-transitions, and discuss some of the implications for our understanding of nature if such a connection is borne out. 31 refs., 16 figs.
Date: January 25, 1990
Creator: Langton, C.
Object Type: Article
System: The UNT Digital Library
HFBR: Review of the technical specifications against the FSAR (open access)

HFBR: Review of the technical specifications against the FSAR

The purpose of this review is to determine the adequacy of the High Flux Beam Reactor (HFBR) Technical Specifications for 40 MW operation by comparison with the HFBR Final Safety Analysis Report, particularly the accident analyses chapter. Specifically, the Technical Specifications were compared against the Design Basis Accident (DBA) Analyses presented in the Addendum to the HFBR FSAR for 60 MW Operation. The 60 MW DBA analyses was used since it is more current and complete than the analyses presented in the original FSAR which is considered obsolete. A listing of the required systems and equipment was made for each of the accidents analyzed. Additionally, the Technical Specification instrument setpoints were compared to the DBA analyses parametric values. Also included in this review was a comparison of the Technical Specification Bases against the FSAR and the identification of any differences. The HFBR Operations Procedures Manual (OPM) was also reviewed for any inconsistencies between the FSAR or the Technical Specifications. Upon completion of this review it was determined that the Technical Specifications are well written and the items commented on should not delay the low power restart (40 MW). Additionally, the OPM is also well written and does not require further …
Date: January 25, 1990
Creator: Rao, D. V.; Ross, S. B.; Claiborne, E. R.; Darby, J. L. & Clark, R. A.
Object Type: Report
System: The UNT Digital Library