Comparison of Analytical and Experimental Effectiveness of Four-Row Plate-Fin-Tube Heat Exchangers with Water, R-22, and R-410A (open access)

Comparison of Analytical and Experimental Effectiveness of Four-Row Plate-Fin-Tube Heat Exchangers with Water, R-22, and R-410A

The analytical solutions of heat exchanger effectiveness for four-row crcmilow, cross-countertlow and cross-paralleltlow have been derived in the recent study. The main objective of this study is to investigate the etlkct of heat exchawger tlow conllguration on thermal performance with refrigerant mixtures. Difference of heat exchanger effectiveness for all flow arrangements relative to an analytical many-row solution has been analyzed. A comparison of four-row cross cou~ltet-ilow heat exchanger effectiveness between analytical solutions and experimental data with water, R-22, and R-4 10A is presented.
Date: November 15, 1998
Creator: Baxter, V. D.; Chen, T. D. & Conklin, J. C.
Object Type: Article
System: The UNT Digital Library
2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks (open access)

2-D electric fields and drifts near the magnetic separatrix in divertor tokamaks

A 2-D calculation is presented for the transport of plasma in the edge region of a divertor tokamak solving continuity, momentum, and energy balance fluid equations. The model uses anomalous radial diffusion, including perpendicular ion momentum, and classical cross-field drifts transport. Parallel and perpendicular currents yield a self-consistent electrostatic potential on both sides of the magnetic separatrix. Outside the separatrix, the simulation extends to material divertor plates where the incident plasma is recycled as neutral gas and where the plate sheath and parallel currents dominate the potential structure. Inside the separatrix, various radial current terms - from viscosity, charge-exchange and poloidal damping, inertia, and {triangledown}B - contribute to the determining the potential. The model rigorously enforces cancellation of gyro-viscous and magnetization terms from the transport equations. The results emphasize the importance of E x B particle flow under the X-point which depends on the sign of the toroidal magnetic field. Radial electric field (E{sub y}) profiles at the outer midplane are small with weak shear when high L-mode diffusion coefficients are used and are large with strong shear when smaller H-mode diffusion coefficients are used. The magnitude and shear of the electric field (E{sub y}) is larger both when the …
Date: November 15, 1998
Creator: Mattor, N.; Porter, G. D.; Rognlien, T. D. & Ryutov, D. D.
Object Type: Article
System: The UNT Digital Library
Continuous, Rapid Production of Uniform Microparticles by Electrodispersion (open access)

Continuous, Rapid Production of Uniform Microparticles by Electrodispersion

Ultrafine particles constitute the key building blocks for diverse advanced structural and functional materials, such as high-performance ceramics and alloys. These advanced materials have tremendous impact in many areas, including catalysis, separations, electronics, energy production processes, and environmental applications. Of particular importance, nanophase ceramic or metallic materials that contain nanosized (<100 nm) particles/grains show dramatically improved performance (mechanical, electrical, optical, magnetic, and/or catalytic). The characteristics of ultrafine particles (i.e. size, morphology, monodispersity, purity, and homogeneity of composition) directly determine the properties of the materials that are made from them. Thus, the future application of advanced materials depends strongly on the capability to produce particles with outstanding characteristics.
Date: November 15, 1998
Creator: DePaoli, D.W. & Hu, M.Z.-C.
Object Type: Article
System: The UNT Digital Library
Riverton Dome Gas Exploration and Stimulation Technology Demonstration, Wind River Basin, Wyoming (open access)

Riverton Dome Gas Exploration and Stimulation Technology Demonstration, Wind River Basin, Wyoming

This project will provide a full demonstration of an entirely new package of exploration technologies that will result in the discovery and development of significant new gas reserves now trapped in unconventional low-permeability reservoirs. This demonstration includes the field application of these technologies, prospect definition and well siting, and a test of this new strategy through wildcat drilling. In addition this project includes a demonstration of a new stimulation technology that will improve completion success in these unconventional low permeability reservoirs which are sensitive to drilling and completion damage. The work includes two test wells to be drilled by Snyder Oil Company on the Shoshone/Arapahoe Tribal Lands in the Wind River Basin. This basin is a foreland basin whose petroleum systems include Paleozoic and Cretaceous source beds and reservoirs which were buried, folded by Laramide compressional folding, and subsequently uplifted asymmetrically. The anomalous pressure boundary is also asymmetric, following differential uplift trends. The Institute for Energy Research has taken a unique approach to building a new exploration strategy for low-permeability gas accumulations in basins characterized by anomalously pressured, compartmentalized gas accumulations. Key to this approach is the determination and three-dimensional evaluation of the pressure boundary between normal and anomalous pressure …
Date: November 15, 1998
Creator: Surdam, Ronald C.
Object Type: Report
System: The UNT Digital Library
Measured Delayed Neutron Spectra from the Fission of U-235 and Np-237 (open access)

Measured Delayed Neutron Spectra from the Fission of U-235 and Np-237

Texas A&M University, in collaboration with Oak Ridge National Laboratory / the Japan Atomic Energy Research Institute, have been actively studying the delayed neutron emission characteristics of the higher actinide isotopes for several years. 1-3 Recently, a proton recoil detector system was designed, built, and characterized for use in measuring delayed neutron energy spectra following neutron induced fission. The system has been used to measure aggregate delayed neutron energy spectra from neutron induced fission of U-235 and Np-237. These spectra have also been compared to that calculated using individual precursor P, values, yields, and spectra from the ENDF/B-VI file. A proton recoil detector array consisting of three LND Model 28305 high- -pressure proton recoil detectors has been constructed at the Texas A&M University Nuclear Science Center. The array was characterized using several neutron and gamma- ray sources to check for efficiency, gamma-ray response, and reliability of the unfolding techniques. Resultant measured proton recoil distributions were unfolded using a modified version of the spectrum unfolding code PSNS (the new code was renamed SAC). SAC used response functions calculated using MCNP 4A. This feature allowed the inclusion of several inches of lead between the detector and the source to decrease the detector's …
Date: November 15, 1998
Creator: Charlton, W. S.; Comfort, C.; Parish, T. A. & Raman, S.
Object Type: Article
System: The UNT Digital Library
Naturally fractured tight gas reservoir detection optimization (open access)

Naturally fractured tight gas reservoir detection optimization

The three tasks were completed during this reporting period. During this quarter, work focused on a local structural analysis of the Table Rock field, greater Green River basin (GGRB) in southwestern Wyoming. The ultimate objective of the local analysis is to apply the techniques developed and demonstrated during earlier phases of the project in the Rulison Field area of the Piceance basin for sweet-spot delineation. The primary goal of this work is to focus in on the Table Rock field area in the northern Washakie basin of the Greater Green River basin in support of Union Pacific Resources and DOE planned horizontal drilling efforts. The work plan for the quarter of April 1, 1998--June 30, 1998 consisted of three tasks: (1) Acquire necessary seismic data and depth-convert, (2) Map major fault geometry and analyze displacement vectors, (3) Develop and initiate a natural fracture prediction study.
Date: November 15, 1998
Creator: unknown
Object Type: Report
System: The UNT Digital Library