Development of alternative oxygen production source using a zirconia solid electrolyte membrane (open access)

Development of alternative oxygen production source using a zirconia solid electrolyte membrane

The objective of this multiyear effort was the development, fabrication and testing of a zirconia oxygen production module capable of delivering approximately 100 liters/minute (LPM) of oxygen. The work discussed in this report consists of development and improvement of the zirconia cell along with manufacture of cell components, preliminary design of the final plant, additional economic analysis and industrial participation. (VC)
Date: August 1, 1990
Creator: Suitor, J. W.; Clark, D. J. & Losey, R. W.
Object Type: Report
System: The UNT Digital Library
Direct Conversion Technology (open access)

Direct Conversion Technology

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)
Date: July 1, 1992
Creator: Back, L.H.; Fabris, G. & Ryan, M.A.
Object Type: Report
System: The UNT Digital Library
Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter) (open access)

Advances in high temperature components for AMTEC (alkali metal thermal-to-electric converter)

Long lifetimes are required for AMTEC (or sodium heat engine) components for aerospace and terrestrial applications, and the high heat input temperature as well as the alkali metal liquid and vapor environment places unusual demands on the materials used to construct AMTEC devices. In addition, it is important to maximize device efficiency and power density, while maintaining a long life capability. In addition to the electrode, which must provide both efficient electrode kinetics, transport of the alkali metal, and low electrical resistance, other high temperature components of the cell face equally demanding requirements. The beta{double prime} alumina solid electrolyte (BASE), the seal between the BASE ceramic and its metallic transition to the hot alkali metal (liquid or vapor) source, and metallic components of the device are exposed to hot liquid alkali metal. Modification of AMTEC components may also be useful in optimizing the device for particular operating conditions. In particular, a potassium AMTEC may be expected to operate more efficiently at lower temperatures.
Date: January 1, 1991
Creator: Williams, R.M.; Jeffries-Nakamura, B.; Underwood, M.L.; Ryan, M.A.; O'Connor, D. & Kikkert, S.
Object Type: Article
System: The UNT Digital Library
Viability study of photo-voltaic systems added to terrestrial electric vehicles (open access)

Viability study of photo-voltaic systems added to terrestrial electric vehicles

The purpose of the following computer study is to determine the set of necessary conditions under which the addition of photo-voltaic (PV) cells to electric vehicles provides a net utility or economic benefit. Economic benefits are given the primary focus and are evaluated in terms of a payback period.
Date: September 1, 1990
Creator: Rippel, W. E.
Object Type: Report
System: The UNT Digital Library
Development of alternative oxygen production source using a zirconia solid electrolyte membrane. Final report (open access)

Development of alternative oxygen production source using a zirconia solid electrolyte membrane. Final report

The objective of this multiyear effort was the development, fabrication and testing of a zirconia oxygen production module capable of delivering approximately 100 liters/minute (LPM) of oxygen. The work discussed in this report consists of development and improvement of the zirconia cell along with manufacture of cell components, preliminary design of the final plant, additional economic analysis and industrial participation. (VC)
Date: August 1, 1990
Creator: Suitor, J. W.; Clark, D. J. & Losey, R. W.
Object Type: Report
System: The UNT Digital Library
Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992 (open access)

Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)
Date: July 1, 1992
Creator: Back, L. H.; Fabris, G. & Ryan, M. A.
Object Type: Report
System: The UNT Digital Library
Reversible thermodynamic cycle for AMTEC power conversion (open access)

Reversible thermodynamic cycle for AMTEC power conversion

The thermodynamic cycle appropriate to an AMTEC (alkali metal thermal-to-electric converter) cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6% of Carnot efficiency for heat input and rejection temperatures (900--1300 K and 400--800 K, respectively) typical of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature. 10 refs.
Date: July 1, 1992
Creator: Vining, C. B.; Williams, R. M.; Underwood, M. L.; Ryan, M. A. & Suitor, J. W.
Object Type: Article
System: The UNT Digital Library
Design considerations for a fiber optic communications network for power systems (open access)

Design considerations for a fiber optic communications network for power systems

The design of a fiber optic communication network for monitoring and control in power systems is discussed. It is shown that by appropriate choice of protocols, a fault-tolerant system can be built that operates in any arbitrary configuration. Since the network is based on fiber optics, it can be made fast enough for substation monitoring and control. In this application, a relatively small number of cables is required to implement a high reliability system. The network can also be used for distribution automation. In this application the network is required to reach all parts of the power system, and the fiber cable itself becomes a significant fraction of the cost of communications. However, since many applications can be supported at once, the cost per function can be reasonable.
Date: August 1, 1993
Creator: Kirkham, H.; Johnston, A. R. & Allen, G. D.
Object Type: Article
System: The UNT Digital Library
Efficiency of an AMTEC recirculating test cell, experiments and projections (open access)

Efficiency of an AMTEC recirculating test cell, experiments and projections

The alkali metal thermal to electric converter (AMTEC) is an electrochemical device for the direct conversion of heat to electrical energy with efficiencies potentially near Carnot. The future usefulness of AMTEC for space power conversion depends on the efficiency of the devices. Systems studies have projected from 15% to 35% thermal to electric conversion efficiencies, and one experiment has demonstrated 19% efficiency for a short period of time. Recent experiments in a recirculating test cell (RTC) have demonstrated sustained conversion efficiencies as high as 10.2% early in cell life and 9.7% after maturity. Extensive thermal and electrochemical analysis of the cell during several experiments demonstrated that the efficiency could be improved in two ways. First, the electrode performance could be improved. The electrode for these tests operated at about one third the power density of state of the art electrodes. The low power density was caused by a combination of high series resistance and high mass flow resistance. Reducing these resistances could improve the efficiency to greater than 10%. Second, the cell thermal performance could be improved. Efficiencies greater than 14% could be realized through reducing the radiative thermal loss. Further improvements to the efficiency range predicted by systems studies …
Date: May 1, 1992
Creator: Underwood, M. L.; O`Connor, D.; Williams, R. M.; Jeffries-Nakamura, B. & Ryan, M. A.
Object Type: Article
System: The UNT Digital Library
Electron cyclotron resonance deposition of amorphous silicon alloy films and devices (open access)

Electron cyclotron resonance deposition of amorphous silicon alloy films and devices

This report describes work to develop a state-of-the-art electron cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition (PECVD) system. The objective was to understand the deposition processes of amorphous silicon (a-Si:H) and related alloys, with a best-effort improvement of optoelectronic material properties and best-effort stabilization of solar cell performance. ECR growth parameters were systematically and extensively investigated; materials characterization included constant photocurrent measurement (CPM), junction capacitance, drive-level capacitance profiling (DLCP), optical transmission, light and dark photoconductivity, and small-angle X-ray scattering (SAXS). Conventional ECR-deposited a-Si:H was compared to a new form, a-Si:(Xe, H), in which xenon gas was added to the ECR plasma. a-Si:(Xe,H) possessed low, stable dark conductivities and high photosensitivites. Light-soaking revealed photodegradation rates about 35% lower than those of comparable radio frequency (rf)-deposited material. ECR-deposited p-type a SiC:H and intrinsic a-Si:H films underwent evaluation as components of p-i-n solar cells with standard rf films for the remaining layers.
Date: October 1, 1992
Creator: Shing, Y. H. (Jet Propulsion Lab., Pasadena, CA (United States))
Object Type: Report
System: The UNT Digital Library
Contingent post-closure plan, hazardous waste management units at selected maintenance facilities, US Army National Training Center, Fort Irwin, California (open access)

Contingent post-closure plan, hazardous waste management units at selected maintenance facilities, US Army National Training Center, Fort Irwin, California

The National Training Center (NTC) at Fort Irwin, California, is a US Army training installation that provides tactical experience for battalion/task forces and squadrons in a mid- to high-intensity combat scenario. Through joint exercises with US Air Force and other services, the NTC also provides a data source for improvements of training doctrines, organization, and equipment. To meet the training and operational needs of the NTC, several maintenance facilities provide general and direct support for mechanical devices, equipment, and vehicles. Maintenance products used at these facilities include fuels, petroleum-based oils, lubricating grease, various degreasing solvents, antifreeze (ethylene glycol), transmission fluid, brake fluid, and hydraulic oil. Used or spent petroleum-based products generated at the maintenance facilities are temporarily accumulated in underground storage tanks (USTs), collected by the NTC hazardous waste management contractor (HAZCO), and stored at the Petroleum, Oil, and Lubricant (POL) Storage Facility, Building 630, until shipped off site to be recovered, reused, and/or reclaimed. Spent degreasing solvents and other hazardous wastes are containerized and stored on-base for up to 90 days at the NTC`s Hazardous Waste Storage Facility, Building 703. The US Environmental Protection Agency (EPA) performed an inspection and reviewed the hazardous waste management operations of the NTC. …
Date: January 1, 1992
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Activated transport in AMTEC electrodes (open access)

Activated transport in AMTEC electrodes

Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and …
Date: July 1, 1992
Creator: Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O`Connor, D. & Kikkert, S.
Object Type: Article
System: The UNT Digital Library
Activated transport in AMTEC electrodes (open access)

Activated transport in AMTEC electrodes

Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and …
Date: January 1, 1992
Creator: Williams, R.M.; Jeffries-Nakamura, B.; Ryan, M.A.; Underwood, M.L.; O'Connor, D. & Kikkert, S.
Object Type: Article
System: The UNT Digital Library
System Software and Tools for High Performance Computing Environments: A report on the findings of the Pasadena Workshop, April 14--16, 1992 (open access)

System Software and Tools for High Performance Computing Environments: A report on the findings of the Pasadena Workshop, April 14--16, 1992

The Pasadena Workshop on System Software and Tools for High Performance Computing Environments was held at the Jet Propulsion Laboratory from April 14 through April 16, 1992. The workshop was sponsored by a number of Federal agencies committed to the advancement of high performance computing (HPC) both as a means to advance their respective missions and as a national resource to enhance American productivity and competitiveness. Over a hundred experts in related fields from industry, academia, and government were invited to participate in this effort to assess the current status of software technology in support of HPC systems. The overall objectives of the workshop were to understand the requirements and current limitations of HPC software technology and to contribute to a basis for establishing new directions in research and development for software technology in HPC environments. This report includes reports written by the participants of the workshop`s seven working groups. Materials presented at the workshop are reproduced in appendices. Additional chapters summarize the findings and analyze their implications for future directions in HPC software technology development.
Date: April 1, 1993
Creator: Sterling, T.; Messina, P. & Chen, M.
Object Type: Report
System: The UNT Digital Library
Electron cyclotron resonance deposition of amorphous silicon alloy films and devices. Final subcontract report, 1 April 1991--31 March 1992 (open access)

Electron cyclotron resonance deposition of amorphous silicon alloy films and devices. Final subcontract report, 1 April 1991--31 March 1992

This report describes work to develop a state-of-the-art electron cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition (PECVD) system. The objective was to understand the deposition processes of amorphous silicon (a-Si:H) and related alloys, with a best-effort improvement of optoelectronic material properties and best-effort stabilization of solar cell performance. ECR growth parameters were systematically and extensively investigated; materials characterization included constant photocurrent measurement (CPM), junction capacitance, drive-level capacitance profiling (DLCP), optical transmission, light and dark photoconductivity, and small-angle X-ray scattering (SAXS). Conventional ECR-deposited a-Si:H was compared to a new form, a-Si:(Xe, H), in which xenon gas was added to the ECR plasma. a-Si:(Xe,H) possessed low, stable dark conductivities and high photosensitivites. Light-soaking revealed photodegradation rates about 35% lower than those of comparable radio frequency (rf)-deposited material. ECR-deposited p-type a SiC:H and intrinsic a-Si:H films underwent evaluation as components of p-i-n solar cells with standard rf films for the remaining layers.
Date: October 1, 1992
Creator: Shing, Y. H.
Object Type: Report
System: The UNT Digital Library
Electrical characterization of electrophoretically coated aluminum samples for photovoltaic concentrator application (open access)

Electrical characterization of electrophoretically coated aluminum samples for photovoltaic concentrator application

The practicality of using a thin-film styrene/acrylate copolymer electrophoretic coating to isolate concentrator cells electrically from their surroundings in a photovoltaic concentrator module is assessed. Only the electrical isolation problem was investigated. The approach was to subject various types of EP-coated aluminum specimens to electrical stress testing and to aging tests while monitoring coating electrical resistivity properties. It was determined that, in general, longer processing times--i.e., thicker electrophoretic layers--resulted in better voltage-withstand properties. In particular, a two-minute processing time seemed sufficient to provide the electrical isolation required in photovoltaic concentrator application applications. Even though electrophoretic coatings did not seem to fill voids in porous-anodized aluminum substrates, breakdown voltages generally exceeded hi-pot pass-fail voltage levels with a comfortable margin. 6 refs, 11 figs, 5 tabs.
Date: October 1, 1992
Creator: Sugimura, R. S.; Mon, G. R. & Ross, R. G. Jr.
Object Type: Report
System: The UNT Digital Library
Neotectonics of the southern Amargosa Desert, Nye County, Nevada and Inyo County, California (open access)

Neotectonics of the southern Amargosa Desert, Nye County, Nevada and Inyo County, California

A complex pattern of active faults occurs in the southern Amargosa Desert, southern Nye, County, Nevada. These faults can be grouped into three main fault systems: (1) a NE-striking zone of faults that forms the southwest extension of the left-lateral Rock Valley fault zone, in the much larger Spotted Range-Mine Mountain structural zone, (2) a N-striking fault zone coinciding with a NNW-trending alignment of springs that is either a northward continuation of a fault along the west side of the Resting Spring Range or a N-striking branch fault of the Pahrump fault system, and (3) a NW-striking fault zone which is parallel to the Pahrump fault system, but is offset approximately 5 km with a left step in southern Ash Meadows. These three fault zones suggest extension is occurring in an E-W direction, which is compatible with the {approximately}N10W structural grain prevalent in the Death Valley extensional region to the west.
Date: May 1, 1991
Creator: Donovan, D.E.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Thermoelectric material development. Quarterly technical progress report, January 1, 1995--March 31, 1995 (open access)

Thermoelectric material development. Quarterly technical progress report, January 1, 1995--March 31, 1995

We have found that there is a limited range of solid solutions between the skutterudite compounds CoSb{sub 3} and RuSb{sub 2}Te (about 5% on each side). For the system (RuSb{sub 2}Te){sub x}(CoSb{sub 3}){sub 1-x}, preliminary results obtained on one n-type sample on the CoSb{sub 3}-rich side show that these alloys have good thermoelectric properties and a maximum ZT of about 0.89 was obtained at about 600 C. More experiments will be started to investigate the possibility of a broader range of miscibility in this system which would allow an even further decrease in the lattice thermal conductivity, resulting in better thermoelectric properties. IrSb{sub 3} and RuSb{sub 2}Te form a complete range of solid solutions. Hot-pressed samples in this system have shown p-type conductivity. The thermoelectric properties of these p-type alloys have been measured and results have shown that their potential for thermoelectric applications is limited mainly because of the relatively low Seebeck coefficient values for p-type materials. Efforts will be directed on preparing n-type samples of the same alloys by doping with various dopants such as Ni and Pd.
Date: July 1, 1995
Creator: Vandersande, J.W. & Caillat, T.
Object Type: Report
System: The UNT Digital Library
Thermoelectric material development. Final report (open access)

Thermoelectric material development. Final report

A search was made for improved TE materials that could have higher efficiency than state-of-the-art SiGe alloys used in Radioisotope Thermoelectric Generators. A new family of materials having the skutterudite structure was identified (cubic space group Im3, formula (Fe, Co, Ni)As{sub 3}). Properties of n-type IrSb{sub 3}, CoSb{sub 3}, and their solid solutions were investigated. Pt, Te, Tl, and In were used as dopants. The thermal conductivity was reduced by about 70% for the solid solutions vs the binary compounds. A maximum ZT of about 0.36 was measured on Co-rich solid solutions which is 160% improved over that of the binary compounds.
Date: October 1, 1994
Creator: Vandersande, J.W.; Allevato, C. & Caillat, T.
Object Type: Report
System: The UNT Digital Library
Spray combustion modeling. Final report (open access)

Spray combustion modeling. Final report

Concern over the future availability of high quality liquid fuels or use in furnaces and boilers prompted the U. S. Department of Energy (DOE) to consider alternate fuels as replacements for the high grade liquid fuels used in the 1970`s and 1980`s. Alternate fuels were defined to be combinations of a large percentage of viscous, low volatility fuels resulting from the low end of distillation mixed with a small percentage of relatively low viscosity, high volatility fuels yielded by the high end of distillation. The addition of high volatility fuels was meant to promote desirable characteristics to a fuel that would otherwise be difficult to atomize and burn and whose combustion would yield a high amount of pollutants. Several questions thus needed to be answered before alternate fuels became commercially viable. These questions were related to fuel atomization, evaporation, ignition, combustion and pollutant formation. This final report describes the results of the most significant studies on ignition and combustion of alternative fuels.
Date: March 1, 1997
Creator: Bellan, J.
Object Type: Report
System: The UNT Digital Library
New vision solar system mission study. Final report (open access)

New vision solar system mission study. Final report

The vision for the future of the planetary exploration program includes the capability to deliver {open_quotes}constellations{close_quotes} or {open_quotes}fleets{close_quotes} of microspacecraft to a planetary destination. These fleets will act in a coordinated manner to gather science data from a variety of locations on or around the target body, thus providing detailed, global coverage without requiring development of a single large, complex and costly spacecraft. Such constellations of spacecraft, coupled with advanced information processing and visualization techniques and high-rate communications, could provide the basis for development of a {open_quotes}virtual{close_quotes} {open_quotes}presence{close_quotes} in the solar system. A goal could be the near real-time delivery of planetary images and video to a wide variety of users in the general public and the science community. This will be a major step in making the solar system accessible to the public and will help make solar system exploration a part of the human experience on Earth.
Date: March 1, 1996
Creator: Mondt, J. F. & Zubrin, R. M.
Object Type: Report
System: The UNT Digital Library