Inertial fusion energy target injection, tracking, and beam pointing (open access)

Inertial fusion energy target injection, tracking, and beam pointing

Several cryogenic targets must be injected each second into a reaction chamber. Required target speed is about 100 m/s. Required accuracy of the driver beams on target is a few hundred micrometers. Fuel strength is calculated to allow acceleration in excess of 10,000 m/s{sup 2} if the fuel temperature is less than 17 K. A 0.1 {mu}m thick dual membrane will allow nearly 2,000 m/s{sup 2} acceleration. Acceleration is gradually increased and decreased over a few membrane oscillation periods (a few ms), to avoid added stress from vibrations which could otherwise cause a factor of two decrease in allowed acceleration. Movable shielding allows multiple targets to be in flight toward the reaction chamber at once while minimizing neutron heating of subsequent targets. The use of multiple injectors is recommended for redundancy which increases availability and allows a higher pulse rate. Gas gun, rail gun, induction accelerator, and electrostatic accelerator target injection devices are studied, and compared. A gas gun is the preferred device for indirect-drive targets due to its simplicity and proven reliability. With the gas gun, the amount of gas required for each target (about 10 to 100 mg) is acceptable. A revolver loading mechanism is recommended with a …
Date: March 7, 1995
Creator: Petzoldt, R.W.
System: The UNT Digital Library
Synthesis, characterization and application of electrode materials (open access)

Synthesis, characterization and application of electrode materials

It has been known that significant advances in electrochemistry really depend on improvements in the sensitivity, selectivity, convenience, and/or economy of working electrodes, especially through the development of new working electrode materials. The advancement of solid state chemistry and materials science makes it possible to provide the materials which may be required as satisfactory electrode materials. The combination of solid state techniques with electrochemistry expands the applications of solid state materials and leads to the improvement of electrocatalysis. The study of Ru-Ti{sub 4}O{sub 7} and Pt-Ti{sub 4}O{sub 7} microelectrode arrays as introduced in paper 1 and paper 4, respectively, focuses on their synthesis and characterization. The synthesis is described by high temperature techniques for Ru or Pt microelectrode arrays within a conductive Ti{sub 4}O{sub 7} ceramic matrix. The characterization is based on the data obtained by x-ray diffractometry, scanning electron microscopy, voltammetry and amperometry. These microelectrode arrays show significant enhancement in current densities in comparison to solid Ru and Pt electrodes. Electrocatalysis at pyrochlore oxide Bi{sub 2}Ru{sub 2}O{sub 7.3} and Bi{sub 2}Ir{sub 2}O{sub 7} electrodes are described in paper 2 and paper 3, respectively. Details are reported for the synthesis and characterization of composite Bi{sub 2}Ru{sub 2}O{sub 7.3} electrodes. Voltammetric …
Date: July 7, 1995
Creator: He, L.
System: The UNT Digital Library
Matrix effects in inductively coupled plasma mass spectrometry (open access)

Matrix effects in inductively coupled plasma mass spectrometry

The inductively coupled plasma is an electrodeless discharge in a gas (usually Ar) at atmospheric pressure. Radio frequency energy generated by a RF power source is inductively coupled to the plasma gas through a water cooled load coil. In ICP-MS the {open_quotes}Fassel{close_quotes} TAX quartz torch commonly used in emission is mounted horizontally. The sample aerosol is introduced into the central flow, where the gas kinetic temperature is about 5000 K. The aerosol is vaporized, atomized, excited and ionized in the plasma, and the ions are subsequently extracted through two metal apertures (sampler and skimmer) into the mass spectrometer. In ICP-MS, the matrix effects, or non-spectroscopic interferences, can be defined as the type of interferences caused by dissolved concomitant salt ions in the solution. Matrix effects can be divided into two categories: (1) signal drift due to the deposition of solids on the sampling apertures; and/or (2) signal suppression or enhancement by the presence of the dissolved salts. The first category is now reasonably understood. The dissolved salts, especially refractory oxides, tend to deposit on the cool tip of the sampling cone. The clogging of the orifices reduces the ion flow into the ICP-MS, lowers the pressure in the first stage …
Date: July 7, 1995
Creator: Chen, Xiaoshan
System: The UNT Digital Library
Gas phase thermochemistry of organogermanium compounds (open access)

Gas phase thermochemistry of organogermanium compounds

A variety of silyl- and alkyl-germylene precursors have been synthesized and subsequently pyrolyzed in the gas phase. Arrhenius parameters were obtained employing a pulsed-stirred flow reactor for these unimolecular decompositions. These precursors are divided into two major categories by mechanism of germylene extrusion: {alpha}-elimination precursors and germylacetylenes. The extrusion of germylenes from germylacetylene precursors is of primary interest. A mechanism is proposed employing a germacyclopropene intermediate. Evidence supporting this mechanism is presented. In the process of exploring germylacetylenes as germylene precursors, an apparent dyatropic rearrangement between germanium and silicon was observed. This rearrangement was subsequently explored.
Date: December 7, 1993
Creator: Engel, J. P.
System: The UNT Digital Library
Topics in electroweak baryogenesis: The sphaleron and t-violation (open access)

Topics in electroweak baryogenesis: The sphaleron and t-violation

Assuming that beyond the standard model physics can be parametrized in terms of high dimensional operators, we examine their effects on the energy of the sphaleron and the classical solution of the gauge and Higgs fields. In the absence of fermions, all of the six dimension 6 operators which are SU(2) symmetric have a small effect when calculated perturbatively. However, calculated non-perturbatively, one of the operators alters the boundary conditions of the equations of motion of the Higgs and gauge fields involved, and another operator gives rise to an abrupt change in the sphaleron energy at a small but definite Higgs quartic coupling. The magnitude of the T-violating muon polarization induced by electromagnetic final state interaction in the radiative Kaon decay K{sup +} {yields} {mu}{sup +}{nu}{mu}{gamma} is order of 10{sup {minus}3}.
Date: December 7, 1993
Creator: SeungKoog, L.
System: The UNT Digital Library
Fundamental studies of hydrogen interaction with supported meta and bimetallic catalysts (open access)

Fundamental studies of hydrogen interaction with supported meta and bimetallic catalysts

The thesis is divided into 3 parts: interaction of H with silica supported Ru catalysts (high pressure in situ NMR), in situ NMR study of H interaction with supported Ru-group IB bimetallic catalysts, and in-situ NMR study of H effects on silica-supported Pt, Rh and Ru catalysts.
Date: December 7, 1993
Creator: Bhatia, S.
System: The UNT Digital Library
Terfenol: A study of the phase equilibrium diagram and the solidification process (open access)

Terfenol: A study of the phase equilibrium diagram and the solidification process

Terfenol is a rare earth-iron alloy that was first developed at the Naval Ordinance Laboratory because of its rare magnetostrictive properties. Terfenol is composed of terbium and dysprosium combined with iron in a composition Tb{sub x}Dy{sub 1{minus}x}Fe{sub 2}, where x{approximately}0.3. The objective of this work was to determine the growth characteristics of Terfenol and its dependence on solidification rate, temperature gradient, and stoichiometry. Specific goals of this work were to verify the phase equilibria that is currently accepted for the systems DyFe{sub 2} and TbFe{sub 2}, and establish the phase equilibria near the composition Tb{sub 0.3}Dy{sub 0.7}Fe{sub 2}; establish that Terfenol grows directly from the liquid and that the reaction is occurring under metastable conditions; evaluate whether or not Terfenol can be grown under plane front conditions with a new radiofrequency float zone apparatus, and; determine whether or not <111> seeded crystals can be grown and <111> single crystals produced by elimination of dendrites employing growth methods capable of achieving high gradient/solidification rate ratios.
Date: December 7, 1993
Creator: Anderson, M.
System: The UNT Digital Library
Measurement of the Angular Distribution of the Electron From W {r_arrow} E = {Nu} decay, in P{Anti P} at {Radical}S = 1.8 Tev, as Function of P{Sub T}{Sup W}; Medida De La Distribucion Angular Del Electron De W en E + Neutrino en P{Anti P} a 1.8 Tev (open access)

Measurement of the Angular Distribution of the Electron From W {r_arrow} E = {Nu} decay, in P{Anti P} at {Radical}S = 1.8 Tev, as Function of P{Sub T}{Sup W}; Medida De La Distribucion Angular Del Electron De W en E + Neutrino en P{Anti P} a 1.8 Tev

The goal of this work was to study the behavior of the angular distribution of the electron form the decay of the W boson in a specific rest-frame of the W, the Collins-Soper frame. This thesis consists of four major divisions, each dealing with closely related themes: (a) Physics Background, (b) Description of the Hardware and General Software Tools, (c) Description of the Analysis and Specific Tools, and (d) Results and Conclusions. Each division is comprised of one or more chapters and each chapter is divided into sections and subsections.
Date: October 7, 1996
Creator: Ramos, M. I. M.
System: The UNT Digital Library
Oxygen electrode reaction in molten carbonate fuel cells. Final report, September 15, 1987--September 14, 1990 (open access)

Oxygen electrode reaction in molten carbonate fuel cells. Final report, September 15, 1987--September 14, 1990

Molten carbonate fuel cell system is a leading candidate for the utility power generation because of its high efficiency for fuel to AC power conversion, capability for an internal reforming, and a very low environmental impact. However, the performance of the molten carbonate fuel cell is limited by the oxygen reduction reaction and the cell life time is limited by the stability of the cathode material. An elucidation of oxygen reduction reaction in molten alkali carbonate is essential because overpotential losses in the molten carbonate fuel cell are considerably greater at the oxygen cathode than at the fuel anode. Oxygen reduction on a fully-immersed gold electrode in a lithium carbonate melt was investigated by electrochemical impedance spectroscopy and cyclic voltammetry to determine electrode kinetic and mass transfer parameters. The dependences of electrode kinetic and mass transfer parameters on gas composition and temperature were examined to determine the reaction orders and the activation energies. The results showed that oxygen reduction in a pure lithium carbonate melt occurs via the peroxide mechanism. A mass transfer parameter, D{sub O}{sup 1/2}C{sub O}, estimated by the cyclic voltammetry concurred with that calculated by the EIS technique. The temperature dependence of the exchange current density and …
Date: July 7, 1992
Creator: Appleby, A. J. & White, R. E.
System: The UNT Digital Library