A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma (open access)

A Seemingly Simple Task: Filling a Solenoid Volume in Vacuum with Dense Plasma

Space-charge neutralization of a pulsed, high-current ion beam is required to compress and focus the beam on a target for warm dense matter physics or heavy ion fusion experiments. We described attempts to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary charge-compensating electrons. Among the options are plasma injection from four pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means and by an array of movable Langmuir probes. The plasma is produced at several cathode spots distributed azimuthally on the ring cathode. Beam neutralization and compression are accomplished, though issues of density, uniformity, and pulse-to-pulse reproducibly remain to be solved.
Date: June 24, 2010
Creator: Anders, Andre; Kauffeldt, Marina; Roy, Prabir & Oks, Efim
System: The UNT Digital Library
Photoacoustically Measured Speeds of Sound of Liquid HBO2: On Unlocking the Fuel Potential of Boron (open access)

Photoacoustically Measured Speeds of Sound of Liquid HBO2: On Unlocking the Fuel Potential of Boron

Elucidation of geodynamic, geochemical, and shock induced processes is often limited by challenges to accurately determine molecular fluid equations of state (EOS). High pressure liquid state reactions of carbon species underlie physiochemical mechanisms such as differentiation of planetary interiors, deep carbon sequestration, propellant deflagration, and shock chemistry. Here we introduce a versatile photoacoustic technique developed to measure accurate and precise speeds of sound (SoS) of high pressure molecular fluids and fluid mixtures. SoS of an intermediate boron oxide, HBO{sub 2} are measured up to 0.5 GPa along the 277 C isotherm. A polarized Exponential-6 interatomic potential form, parameterized using our SoS data, enables EOS determinations and corresponding semi-empirical evaluations of > 2000 C thermodynamic states including energy release from bororganic formulations. Our thermochemical model propitiously predicts boronated hydrocarbon shock Hugoniot results.
Date: March 24, 2010
Creator: Bastea, S.; Crowhurst, J.; Armstrong, M. & Teslich, Nick, Jr.
System: The UNT Digital Library
Steering the Self-Assembly of Octadecylamine Monolayers on Mica by Controlled Mechanical Energy Transfer from the AFM Tip (open access)

Steering the Self-Assembly of Octadecylamine Monolayers on Mica by Controlled Mechanical Energy Transfer from the AFM Tip

We have studied the effect of mechanical energy transfer from the tip of an Atomic Force Microscope on the dynamics of self-assembly of monolayer films of octadecylamine on mica. The formation of the self-assembled film proceeds in two successive stages, the first being a fast adsorption from solution that follows a Langmuir isotherm. The second is a slower process of island growth by aggregation of the molecules dispersed on the surface. We found that the dynamics of aggregation can be altered substantially by the addition of mechanical energy into the system through controlled tip-surface interactions. This leads to either the creation of pinholes in existing islands as a consequence of vacancy concentration, and to the assembly of residual molecules into more compact islands.
Date: June 24, 2010
Creator: Benitez, J.J.; Heredia-Guerrero, J.A. & Salmeron, M.
System: The UNT Digital Library
Impact of WRF Physics and Grid Resolution on Low-level Wind Prediction: Towards the Assessment of Climate Change Impact on Future Wind Power (open access)

Impact of WRF Physics and Grid Resolution on Low-level Wind Prediction: Towards the Assessment of Climate Change Impact on Future Wind Power

The Weather Research and Forecast (WRF) model is used in short-range simulations to explore the sensitivity of model physics and horizontal grid resolution. We choose five events with the clear-sky conditions to study the impact of different planetary boundary layer (PBL), surface and soil-layer physics on low-level wind forecast for two wind farms; one in California (CA) and the other in Texas (TX). Short-range simulations are validated with field measurements. Results indicate that the forecast error of the CA case decreases with increasing grid resolution due to the improved representation of valley winds. Besides, the model physics configuration has a significant impact on the forecast error at this location. In contrast, the forecast error of the TX case exhibits little dependence on grid resolution and is relatively independent of physics configuration. Therefore, the occurrence frequency of lowest root mean square errors (RMSEs) at this location is used to determine an optimal model configuration for subsequent decade-scale regional climate model (RCM) simulations. In this study, we perform two sets of 20-year RCM simulations using the data from the NCAR Global Climate Model (GCM) simulations; one set models the present climate and the other simulates the future climate. These RCM simulations will …
Date: February 24, 2010
Creator: Chin, H S; Glascoe, L; Lundquist, J & Wharton, S
System: The UNT Digital Library
Enhanced Constraints on theta13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND (open access)

Enhanced Constraints on theta13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND

We present new constraints on the neutrino oscillation parameters {Delta}m{sub 21}{sup 2}, {theta}{sub 12}, and {theta}{sub 13} from a three-flavor analysis of solar and KamLAND data. The KamLAND data set includes data acquired following a radiopurity upgrade and amounts to a total exposure of 3.49 x 10{sup 32} target-proton-year. Under the assumption of CPT invariance, a two-flavor analysis ({theta}{sub 13} = 0) of the KamLAND and solar data yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.444{sub -0.030}{sup +0.036} and {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5} eV{sup 2}; a three-flavor analysis with {theta}{sub 13} as a free parameter yields the best-fit values tan{sup 2} {theta}{sub 12} = 0.452{sub -0.033}{sup +0.035}, {Delta}m{sub 21}{sup 2} = 7.50{sub -0.20}{sup +0.19} x 10{sup -5}eV{sup 2}, and sin{sup 2} {theta}{sub 13} = 0.020{sub -0.016}{sup +0.016}. This {theta}{sub 13} interval is consistent with other recent work combining the CHOOZ, atmospheric and long-baseline accelerator experiments. We also present a new global {theta}{sub 13} analysis, incorporating the CHOOZ, atmospheric and accelerator data, which indicates sin{sup 2} {theta}{sub 13} = 0.017{sub -0.009}{sup +0.010}, a nonzero value at the 93% C.L. This finding will be further tested by upcoming accelerator and reactor experiments.
Date: September 24, 2010
Creator: Collaboration, The KamLAND; Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K. et al.
System: The UNT Digital Library
Numerical Simulation of Phase Space Advection in Gyrokinetic Models of Fusion Plasmas (open access)

Numerical Simulation of Phase Space Advection in Gyrokinetic Models of Fusion Plasmas

None
Date: June 24, 2010
Creator: Dorr, M R; Cohen, R H; Colella, P; Hittinger, J A & Martin, D F
System: The UNT Digital Library
Local Magnitude Tomography in California (open access)

Local Magnitude Tomography in California

None
Date: May 24, 2010
Creator: Ford, S R; Uhrhammer, R A & Hellweg, M
System: The UNT Digital Library
Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles (open access)

Soft X-ray Spectroscopy Study of the Electronic Structure of Oxidized and Partially Oxidized Magnetite Nanoparticles

The crystal structure of magnetite nanoparticles may be transformed to maghemite by complete oxidation, but under many relevant conditions the oxidation is partial, creating a mixed-valence material with structural and electronic properties that are poorly characterized. We used X-ray diffraction, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy, and soft X-ray absorption and emission spectroscopy to characterize the products of oxidizing uncoated and oleic acid-coated magnetite nanoparticles in air. The oxidization of uncoated magnetite nanoparticles creates a material that is structurally and electronically indistinguishable from maghemite. By contrast, while oxidized oleic acid-coated nanoparticles are also structurally indistinguishable from maghemite, Fe L-edge spectroscopy revealed the presence of interior reduced iron sites even after a 2-year period. We used X-ray emission spectroscopy at the O K-edge to study the valence bands (VB) of the iron oxide nanoparticles, using resonant excitation to remove the contributions from oxygen atoms in the ligands and from low-energy excitations that obscured the VB edge. The bonding in all nanoparticles was typical of maghemite, with no detectable VB states introduced by the long-lived, reduced-iron sites in the oleic acid-coated sample. However, O K-edge absorption spectroscopy observed a 0.2 eV shift in the position of the lowest unoccupied …
Date: October 24, 2010
Creator: Gilbert, Benjamin; Katz, Jordan E.; Denlinger, Jonathan D.; Yin, Yadong; Falcone, Roger & Waychunas, Glenn A.
System: The UNT Digital Library
Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums (open access)

Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums

None
Date: July 24, 2010
Creator: Glenzer, S H; MacGowan, B J & Meezan, N B
System: The UNT Digital Library
THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE (open access)

THE EFFECT OF ANOLYTE PRODUCT ACID CONCENTRATION ON HYBRID SULFUR CYCLE PERFORMANCE

The Hybrid Sulfur (HyS) cycle (Fig. 1) is one of the simplest, all-fluids thermochemical cycles that has been devised for splitting water with a high-temperature nuclear or solar heat source. It was originally patented by Brecher and Wu in 1975 and extensively developed by Westinghouse in the late 1970s and early 1980s. As its name suggests, the only element used besides hydrogen and oxygen is sulfur, which is cycled between the +4 and +6 oxidation states. HyS comprises two steps. One is the thermochemical (>800 C) decomposition of sulfuric acid (H{sub 2}SO{sub 4}) to sulfur dioxide (SO{sub 2}), oxygen (O{sub 2}), and water. H{sub 2}SO{sub 4} = SO{sub 2} + 1/2 O{sub 2} + H{sub 2}O. The other is the SO{sub 2}-depolarized electrolysis of water to H{sub 2}SO{sub 4} and hydrogen (H{sub 2}), SO{sub 2} + 2 H{sub 2}O = H{sub 2}SO{sub 4} + H{sub 2}, E{sup o} = -0.156 V, explaining the 'hybrid' designation. These two steps taken together split water into H{sub 2} and O{sub 2} using heat and electricity. Researchers at the Savannah River National Laboratory (SRNL) and at the University of South Carolina (USC) have successfully demonstrated the use of proton exchange membrane (PEM) electrolyzers (Fig. …
Date: March 24, 2010
Creator: Gorensek, M. & Summers, W.
System: The UNT Digital Library
Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter (open access)

Embedded Fiber Optic Probes to Measure Detonation Velocities Using the Photonic Doppler Velocimeter

None
Date: March 24, 2010
Creator: Hare, D E; Garza, R G; Strand, O T; Whitworth, T L & Holtkamp, D B
System: The UNT Digital Library
Superresolution with Seismic Arrays using Empirical Matched Field Processing (open access)

Superresolution with Seismic Arrays using Empirical Matched Field Processing

Scattering and refraction of seismic waves can be exploited with empirical matched field processing of array observations to distinguish sources separated by much less than the classical resolution limit. To describe this effect, we use the term 'superresolution', a term widely used in the optics and signal processing literature to denote systems that break the diffraction limit. We illustrate superresolution with Pn signals recorded by the ARCES array in northern Norway, using them to identify the origins with 98.2% accuracy of 549 explosions conducted by closely-spaced mines in northwest Russia. The mines are observed at 340-410 kilometers range and are separated by as little as 3 kilometers. When viewed from ARCES many are separated by just tenths of a degree in azimuth. This classification performance results from an adaptation to transient seismic signals of techniques developed in underwater acoustics for localization of continuous sound sources. Matched field processing is a potential competitor to frequency-wavenumber and waveform correlation methods currently used for event detection, classification and location. It operates by capturing the spatial structure of wavefields incident from a particular source in a series of narrow frequency bands. In the rich seismic scattering environment, closely-spaced sources far from the observing array …
Date: March 24, 2010
Creator: Harris, D B & Kvaerna, T
System: The UNT Digital Library
MUST: A Scalable Approach to Runtime Error Detection in MPI Programs (open access)

MUST: A Scalable Approach to Runtime Error Detection in MPI Programs

The Message-Passing Interface (MPI) is large and complex. Therefore, programming MPI is error prone. Several MPI runtime correctness tools address classes of usage errors, such as deadlocks or nonportable constructs. To our knowledge none of these tools scales to more than about 100 processes. However, some of the current HPC systems use more than 100,000 cores and future systems are expected to use far more. Since errors often depend on the task count used, we need correctness tools that scale to the full system size. We present a novel framework for scalable MPI correctness tools to address this need. Our fine-grained, module-based approach supports rapid prototyping and allows correctness tools built upon it to adapt to different architectures and use cases. The design uses PnMPI to instantiate a tool from a set of individual modules. We present an overview of our design, along with first performance results for a proof of concept implementation.
Date: March 24, 2010
Creator: Hilbrich, T.; Schulz, M.; de Supinski, B. R. & Muller, M.
System: The UNT Digital Library
Distribution of Te inclusions in a CdZnTe wafer and their effects on the electrical properties of fabricated devices (open access)

Distribution of Te inclusions in a CdZnTe wafer and their effects on the electrical properties of fabricated devices

We quantified the size and concentration of Te-inclusions along the lateral- and the growth-directions of a {approx}6 mm thick wafer cut axially along the center of a CdZnTe ingot. We fabricated devices, selecting samples from the center slice outward in both directions, and then tested their response to incident x-rays. We employed, in concert, an automated IR transmission microscopic system and a highly collimated synchrotron X-ray source that allowed us to acquire and correlate comprehensive information on Te inclusions and other defects to assess the material factors limiting the performance of CdZnTe detectors.
Date: May 24, 2010
Creator: Hossain , A.; Xu, L.; Bolotnikov, A. E.; Camarda, G. S.; Cui, Y.; Yang, G. et al.
System: The UNT Digital Library
H5hut: A High-Performance I/O Library for Particle-based Simulations (open access)

H5hut: A High-Performance I/O Library for Particle-based Simulations

Particle-based simulations running on large high-performance computing systems over many time steps can generate an enormous amount of particle- and field-based data for post-processing and analysis. Achieving high-performance I/O for this data, effectively managing it on disk, and interfacing it with analysis and visualization tools can be challenging, especially for domain scientists who do not have I/O and data management expertise. We present the H5hut library, an implementation of several data models for particle-based simulations that encapsulates the complexity of HDF5 and is simple to use, yet does not compromise performance.
Date: September 24, 2010
Creator: Howison, Mark; Adelmann, Andreas; Bethel, E. Wes; Gsell, Achim; Oswald, Benedikt & Prabhat,
System: The UNT Digital Library
Tuning HDF5 for Lustre File Systems (open access)

Tuning HDF5 for Lustre File Systems

HDF5 is a cross-platform parallel I/O library that is used by a wide variety of HPC applications for the flexibility of its hierarchical object-database representation of scientific data. We describe our recent work to optimize the performance of the HDF5 and MPI-IO libraries for the Lustre parallel file system. We selected three different HPC applications to represent the diverse range of I/O requirements, and measured their performance on three different systems to demonstrate the robustness of our optimizations across different file system configurations and to validate our optimization strategy. We demonstrate that the combined optimizations improve HDF5 parallel I/O performance by up to 33 times in some cases running close to the achievable peak performance of the underlying file system and demonstrate scalable performance up to 40,960-way concurrency.
Date: September 24, 2010
Creator: Howison, Mark; Koziol, Quincey; Knaak, David; Mainzer, John & Shalf, John
System: The UNT Digital Library
Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique (open access)

Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique

Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to understand properties of the particulate matter. We propose a computational technique based on the direct numerical simulation of the particulate flows. The numerical method is based on the distributed Lagrange multiplier technique following the ideas of Glowinski et al. (1999). Each particle is explicitly resolved on an Eulerian grid as a separate domain, using solid volume fractions. The fluid equations are solved through the entire computational domain, however, Lagrange multiplier constrains are applied inside the particle domain such that the fluid within any volume associated with a solid particle moves as an incompressible rigid body. Mutual forces for the fluid-particle interactions are internal to the system. Particles interact with the fluid via fluid dynamic equations, resulting in implicit fluid-rigid-body coupling relations that produce realistic fluid flow around the particles (i.e., no-slip boundary conditions). The particle-particle interactions are implemented using explicit force-displacement interactions for frictional inelastic particles similar to the DEM method of Cundall et al. (1979) with some modifications using a volume of an overlapping region as an input to the …
Date: March 24, 2010
Creator: Kanarska, Y
System: The UNT Digital Library
Development of the ITER Advanced Steady State and Hybrid Scenarios (open access)

Development of the ITER Advanced Steady State and Hybrid Scenarios

Full discharge simulations are performed to examine the plasma current rampup, flattop and rampdown phases self-consistently with the poloidal field (PF) coils and their limitations, plasma transport evolution, and heating/current drive (H/CD) sources. Steady state scenarios are found that obtain 100% non-inductive current with Ip = 7.3-10.0 MA, βN ~ 2.5 for H98 = 1.6, Q’s range from 3 to 6, n/nGr = 0.75-1.0, and NB, IC, EC, and LH source have been examined. The scenarios remain within CS/PF coil limits by advancing the pre-magnetization by 40 Wb. Hybrid scenarios have been identified with 35-40% non-inductive current for Ip = 12.5 MA, H98 ~ 1.25, with q(0) reaching 1 at or after the end of rampup. The equilibrium operating space for the hybrid shows a large range of scenarios can be accommodated, and access 925-1300 s flattop burn durations.
Date: September 24, 2010
Creator: Kessel, C. E.; Campbell, D.; Casper, T.; Gribov, Y. & Snipes, J.
System: The UNT Digital Library
Long Range Active Detection of HEU Based on Thermal Neutron Multiplication (open access)

Long Range Active Detection of HEU Based on Thermal Neutron Multiplication

We report on the results of measurements of proton irradiation on a series of targets at Brookhaven National Laboratory’s (BNL) Alternate Gradient Synchrotron Facility (AGS), in collaboration with LANL and SNL. We examined the prompt radiation environment in the tunnel for the DTRA-sponsored series (E 972), which investigated the penetration of air and subsequent target interaction of 4 GeV proton pulses. Measurements were made by means of an organic scintillator with a 500 MHz bandwidth system. We found that irradiation of a depleted uranium (DU) target resulted in a large gamma-ray signal in the 100-500 µsec time region after the proton flash when the DU was surrounded by polyethylene, but little signal was generated if it was surrounded by boron-loaded polyethylene. Subsequent Monte Carlo (MCNPX) calculations indicated that the source of the signal was consistent with thermal neutron capture in DU. The MCNPX calculations also indicated that if one were to perform the same experiment with a highly enriched uranium (HEU) target there would be a distinctive fast neutron yield in this 100-500 µsec time region from thermal neutron-induced fission. The fast neutrons can be recorded by the same direct current system and differentiated from gamma ray pulses in organic …
Date: May 24, 2010
Creator: L., Forman; I., Dioszegi; Salwen, C. & and Vanier, P.E.
System: The UNT Digital Library
Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers (open access)

Energy Efficiency Design Options for Residential Water Heaters: Economic Impacts on Consumers

The U.S. Department of Energy (DOE) recently completed a rulemaking process in which it amended the existing energy efficiency standards for residential water heaters. A key factor in DOE?s consideration of new standards is the economic impacts on consumers. Determining such impacts requires a comparison of the additional first cost of energy efficiency design options with the savings in operating costs. This paper describes the method used to conduct the life-cycle cost (LCC) and payback period analysis for gas and electric storage water heaters. It presents the estimated change in LCC associated with more energy-efficient equipment, including heat pump electric water heaters and condensing gas water heaters, for a representative sample of U.S. homes. The study included a detailed accounting of installation costs for the considered design options, with a focus on approaches for accommodating the larger dimensions of more efficient water heaters. For heat pump water heaters, the study also considered airflow requirements, venting issues, and the impact of these products on the indoor environment. The results indicate that efficiency improvement relative to the baseline design reduces the LCC in the majority of homes for both gas and electric storage water heaters, and heat pump electric water heaters and …
Date: November 24, 2010
Creator: Lekov, Alex; Franco, Victor; Meyers, Steve; Thompson, Lisa & Letschert, Virginie
System: The UNT Digital Library
Progress on a Be Cavity Design (open access)

Progress on a Be Cavity Design

Previous RF experiments with normal-conducting cavities have demonstrated that there is a significant degradation in maximum gradient when the cavity is subjected to a strong axial magnetic field. We have developed a model suggesting that a cavity with beryllium walls may perform better than copper cavities. In this paper we outline the issues that led us to propose fabricating a Be-wall cavity. We also discuss a concept for fabricating such a cavity and mention some of the manufacturing issues we expect to face.
Date: December 24, 2010
Creator: Li, D.; Palmer, R.; Stratakis, D.; Virostek, S. & Zisman, Michael S.
System: The UNT Digital Library
Calibration of a High Resolution Grating Soft X-ray Spectrometer (open access)

Calibration of a High Resolution Grating Soft X-ray Spectrometer

None
Date: August 24, 2010
Creator: Magee, E. W.; Dunn, J.; Brown, G. V.; Cone, K. V.; Park, J.; Porter, F. S. et al.
System: The UNT Digital Library
Exploring Athermal Initiation Mechanisms of Azides (open access)

Exploring Athermal Initiation Mechanisms of Azides

None
Date: February 24, 2010
Creator: Manaa, M R & Overturf, G E
System: The UNT Digital Library
X-ray photon-in/photon-out methods for chemical imaging (open access)

X-ray photon-in/photon-out methods for chemical imaging

Most interesting materials in nature are heterogeneous, so it is useful to have analytical techniques with spatial resolution sufficient to resolve these heterogeneities.This article presents the basics of X-ray photon-in/photon-out chemical imaging. This family of methods allows one to derive images reflectingthe chemical state of a given element in a complex sample, at micron or deep sub-micron scale. X-ray chemical imaging is relatively non-destructiveand element-selective, and requires minimal sample preparation. The article presents the basic concepts and some considerations of data takingand data analysis, along with some examples.
Date: March 24, 2010
Creator: Marcus, Matthew A.
System: The UNT Digital Library