Studies in ion source development for application in heavy ion fusion (open access)

Studies in ion source development for application in heavy ion fusion

The overall purpose of these experiments is to contribute to the development of ion injector technology in order to produce a driver for use in a heavy-ion-fusion (HIF) power generating facility. The overall beam requirements for HIF are quite demanding; a short list of the constraints is the following: (1) Low cost (a large portion of overall cost will come from the beam system); (2) Bright, low emittance beam; (3) Total beam energy 5MJ; (4) Spot size 3mm (radius); (5) Pulse Duration 10ns; (6) Current on target 40kA; (7) Repetition Rate 5Hz; (8) Standoff from target 5m; and (9) Transverse Temp < 1 keV. The reasons for employing ion beams in inertial fusion systems become obvious when the repetition rate required is considered. While laser drivers are useful in producing a proof-of-concept, they will be incapable of application in power generation. Consequently attempts in the U.S. to achieve a power generating system make use of linear ion accelerators. It is apparent that the accelerator system requires the highest quality input as obtainable. Therefore injector design is an essential portion of the entire inertial fusion system. At Lawrence Berkeley and Lawrence Livermore National Laboratories experiments are being conducted using two injector …
Date: May 30, 2004
Creator: Kapica, Jonathan G.
System: The UNT Digital Library
Diffusion in silicon isotope heterostructures (open access)

Diffusion in silicon isotope heterostructures

The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale …
Date: May 14, 2004
Creator: Silvestri, Hughes Howland
System: The UNT Digital Library
Recombination and propagation of quasiparticles in cuprate superconductors (open access)

Recombination and propagation of quasiparticles in cuprate superconductors

Rapid developments in time-resolved optical spectroscopy have led to renewed interest in the nonequilibrium state of superconductors and other highly correlated electron materials. In these experiments, the nonequilibrium state is prepared by the absorption of short (less than 100 fs) laser pulses, typically in the near-infrared, that perturb the density and energy distribution of quasiparticles. The evolution of the nonequilibrium state is probed by time resolving the changes in the optical response functions of the medium that take place after photoexcitation. Ultimately, the goal of such experiments is to understand not only the nonequilibrium state, but to shed light on the still poorly understood equilibrium properties of these materials. We report nonequilibrium experiments that have revealed aspects of the cup rates that have been inaccessible by other techniques. Namely, the diffusion and recombination coefficients of quasiparticles have been measured in both YBa{sub 2}Cu{sub 3}O{sub 6.5} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} using time-resolved optical spectroscopy. Dependence of these measurements on doping, temperature and laser intensity is also obtained. To study the recombination of quasiparticles, we measure the change in reflectivity {Delta}R which is directly proportional to the nonequilibrium quasiparticle density created by the laser. From the intensity dependence, we estimate …
Date: May 20, 2004
Creator: Gedik, Nuh
System: The UNT Digital Library
Aspherical supernovae (open access)

Aspherical supernovae

Although we know that many supernovae are aspherical, the exact nature of their geometry is undetermined. Because all the supernovae we observe are too distant to be resolved, the ejecta structure can't be directly imaged, and asymmetry must be inferred from signatures in the spectral features and polarization of the supernova light. The empirical interpretation of this data, however, is rather limited--to learn more about the detailed supernova geometry, theoretical modeling must been undertaken. One expects the geometry to be closely tied to the explosion mechanism and the progenitor star system, both of which are still under debate. Studying the 3-dimensional structure of supernovae should therefore provide new break throughs in our understanding. The goal of this thesis is to advance new techniques for calculating radiative transfer in 3-dimensional expanding atmospheres, and use them to study the flux and polarization signatures of aspherical supernovae. We develop a 3-D Monte Carlo transfer code and use it to directly fit recent spectropolarimetric observations, as well as calculate the observable properties of detailed multi-dimensional hydrodynamical explosion simulations. While previous theoretical efforts have been restricted to ellipsoidal models, we study several more complicated configurations that are tied to specific physical scenarios. We explore clumpy …
Date: May 21, 2004
Creator: Kasen, Daniel Nathan
System: The UNT Digital Library
Search for first generation leptoquarks in electron + neutrino + dijet channel (open access)

Search for first generation leptoquarks in electron + neutrino + dijet channel

None
Date: May 1, 2004
Creator: Cothenet, Alexis
System: The UNT Digital Library
The CMS forward calorimeter prototype design studies and Omega(c)0 search at E781 experiment at Fermilab (open access)

The CMS forward calorimeter prototype design studies and Omega(c)0 search at E781 experiment at Fermilab

In the fit part, the Compact Muon Solenoid (CMS) forward calorimeter design studies are presented. The forward calorimeter consists of quartz fibers embedded in a steel absorber. Radiation damage studies of the quartz fiber and the absorber as well as the results of the first pre-production prototype PPP-I are presented. In the second part, the {Omega}{sub c}{sup 0}search studies at the SELEX (E781) experiment at FermiLab are presented. 107 {+-} 22 {Omega}{sub c}{sup 0} events are observed in three decay modes. The relative branching ratio ({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup -}{pi}{sup +}{pi}{sup +})/{Beta}({Omega}{sub c}{sup 0} {yields} {Omega}{sup -}{pi}{sup +}) is measured as 2.00 {+-} 0.45(stat) {+-} 0.32(sys).
Date: May 1, 2004
Creator: Ayan, Ahmet Sedat
System: The UNT Digital Library
Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays (open access)

Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al{sub 2}O{sub 3}) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on …
Date: May 15, 2004
Creator: Grunes, Jeffrey Benjamin
System: The UNT Digital Library
Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy (open access)

Characterization of the molecular structure and mechanical properties of polymer surfaces and protein/polymer interfaces by sum frequency generation vibrational spectroscopy and atomic force microscopy

Sum frequency generation (SFG) vibrational spectroscopy, atomic force microscopy (AFM), and other complementary surface-sensitive techniques have been used to study the surface molecular structure and surface mechanical behavior of biologically-relevant polymer systems. SFG and AFM have emerged as powerful analytical tools to deduce structure/property relationships, in situ, for polymers at air, liquid and solid interfaces. The experiments described in this dissertation have been performed to understand how polymer surface properties are linked to polymer bulk composition, substrate hydrophobicity, changes in the ambient environment (e.g., humidity and temperature), or the adsorption of macromolecules. The correlation of spectroscopic and mechanical data by SFG and AFM can become a powerful methodology to study and engineer materials with tailored surface properties. The overarching theme of this research is the interrogation of systems of increasing structural complexity, which allows us to extend conclusions made on simpler model systems. We begin by systematically describing the surface molecular composition and mechanical properties of polymers, copolymers, and blends having simple linear architectures. Subsequent chapters focus on networked hydrogel materials used as soft contact lenses and the adsorption of protein and surfactant at the polymer/liquid interface. The power of SFG is immediately demonstrated in experiments which identify the chemical …
Date: May 15, 2004
Creator: Koffas, Telly Stelianos
System: The UNT Digital Library