A robust, coupled approach for atomistic-continuum simulation. (open access)

A robust, coupled approach for atomistic-continuum simulation.

This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled 'A Robust, Coupled Approach to Atomistic-Continuum Simulation'. Presented in this document is the development of a formulation for performing quasistatic, coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equations that arise due to kinematic coupling and corrections used for the calculation of system potential energy to account for continuum elements that overlap regions containing atomic bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic simulations including measures of stress, temperature and heat flux, calculation used to determine the appropriate spatial and time averaging necessary to enable these atomistically-defined expressions to have the same physical meaning as their continuum counterparts, and a formulation to quantify a continuum 'temperature field', the first step towards constructing a coupled atomistic-continuum approach capable of finite temperature and dynamic analyses.
Date: September 1, 2004
Creator: Aubry, Sylvie; Webb, Edmund Blackburn, III; Wagner, Gregory John; Klein, Patrick A.; Jones, Reese E.; Zimmerman, Jonathan A. et al.
Object Type: Report
System: The UNT Digital Library
In-situ scanning probe microscopy of electrodeposited nickel. (open access)

In-situ scanning probe microscopy of electrodeposited nickel.

The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was …
Date: October 1, 2004
Creator: Kelly, James J. & Dibble, Dean C.
Object Type: Report
System: The UNT Digital Library
Next generation spindles for micromilling. (open access)

Next generation spindles for micromilling.

There exists a wide variety of important applications for micro- and meso-scale mechanical systems in the commercial and defense sectors, which require high-strength materials and complex geometries that cannot be produced using current MEMS fabrication technologies. Micromilling has great potential to fill this void in MEMS technology by adding the capability of free form machining of complex 3D shapes from a wide variety and combination of traditional, well-understood engineering alloys, glasses and ceramics. Inefficiencies in micromilling result from the relationships between a cutting tool's breaking strength, the applied cutting force, and the metal removal rate. Because machining times in mesofeatures scale inversely to the part size, a feature 1/10th as large will take 10 times as long to machine. Also, required chip sizes of 1 m or less are cut with tools having edge radius of 2-3 m, the cutting edge effectively has a highly negative rake angle, cutting forces are increased significantly causing chip loads to be further reduced and the machining takes even longer than predicted above. However, cutting forces do not increase with cutting speed, so faster spindles with reduced tool runout are the path to achieve efficient mesoscale milling. This research explored the development of new …
Date: December 1, 2004
Creator: Pathak, Jay P. (Machine Tool Research Center, University of Florida, Gainesville, FL); Payne, Scott W. T. (Machine Tool Research Center, University of Florida, Gainesville, FL); Gill, David Dennis; Ziegert, John C. (Machine Tool Research Center, University of Florida, Gainesville, FL) & Jokiel, Bernhard, Jr.
Object Type: Report
System: The UNT Digital Library
Some attributes of a language for property-based testing. (open access)

Some attributes of a language for property-based testing.

Property-based testing is a testing technique that evaluates executions of a program. The method checks that specifications, called properties, hold throughout the execution of the program. TASpec is a language used to specify these properties. This paper compares some attributes of the language with the specification patterns used for model-checking languages, and then presents some descriptions of properties that can be used to detect common security flaws in programs. This report describes the results of a one year research project at the University of California, Davis, which was funded by a University Collaboration LDRD entitled ''Property-based Testing for Cyber Security Assurance''.
Date: November 1, 2004
Creator: Neagoe, Vicentiu (University of California, Davis, CA) & Bishop, Matt (University of California, Davis, CA)
Object Type: Report
System: The UNT Digital Library
Closure Report for Corrective Action Unit 210: Storage Areas and Contaminated Material, Nevada Test Site, Nevada (open access)

Closure Report for Corrective Action Unit 210: Storage Areas and Contaminated Material, Nevada Test Site, Nevada

Corrective Action Unit 210, Storage Areas and Contaminated Material, is identified in the Federal Facilities Agreement and Consent Order. This Corrective Action Unit consists of four Corrective Action Sites located in Areas 10, 12, and 15 of the Nevada Test Site. This report documents that the closure activities conducted meet the approved closure standards.
Date: June 1, 2004
Creator: United States. National Nuclear Security Administration. Nevada Site Office.
Object Type: Report
System: The UNT Digital Library
Potential application of microsensor technology in radioactive waste management with emphasis on headspace gas detection. (open access)

Potential application of microsensor technology in radioactive waste management with emphasis on headspace gas detection.

Waste characterization is probably the most costly part of radioactive waste management. An important part of this characterization is the measurements of headspace gas in waste containers in order to demonstrate the compliance with Resource Conservation and Recovery Act (RCRA) or transportation requirements. The traditional chemical analysis methods, which include all steps of gas sampling, sample shipment and laboratory analysis, are expensive and time-consuming as well as increasing worker's exposure to hazardous environments. Therefore, an alternative technique that can provide quick, in-situ, and real-time detections of headspace gas compositions is highly desirable. This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Potential Application of Microsensor Technology in Radioactive Waste Management with Emphasis on Headspace Gas Detection'. The objective of this project is to bridge the technical gap between the current status of microsensor development and the intended applications of these sensors in nuclear waste management. The major results are summarized below: {sm_bullet} A literature review was conducted on the regulatory requirements for headspace gas sampling/analysis in waste characterization and monitoring. The most relevant gaseous species and the related physiochemical environments were identified. It was found that preconcentrators might be needed in order for …
Date: September 1, 2004
Creator: Davis, Chad Edward; Thomas, Michael Loren; Wright, Jerome L.; Pohl, Phillip Isabio; Hughes, Robert Clark; Wang, Yifeng et al.
Object Type: Report
System: The UNT Digital Library
Analysis and control of distributed cooperative systems. (open access)

Analysis and control of distributed cooperative systems.

As part of DARPA Information Processing Technology Office (IPTO) Software for Distributed Robotics (SDR) Program, Sandia National Laboratories has developed analysis and control software for coordinating tens to thousands of autonomous cooperative robotic agents (primarily unmanned ground vehicles) performing military operations such as reconnaissance, surveillance and target acquisition; countermine and explosive ordnance disposal; force protection and physical security; and logistics support. Due to the nature of these applications, the control techniques must be distributed, and they must not rely on high bandwidth communication between agents. At the same time, a single soldier must easily direct these large-scale systems. Finally, the control techniques must be provably convergent so as not to cause undo harm to civilians. In this project, provably convergent, moderate communication bandwidth, distributed control algorithms have been developed that can be regulated by a single soldier. We have simulated in great detail the control of low numbers of vehicles (up to 20) navigating throughout a building, and we have simulated in lesser detail the control of larger numbers of vehicles (up to 1000) trying to locate several targets in a large outdoor facility. Finally, we have experimentally validated the resulting control algorithms on smaller numbers of autonomous vehicles.
Date: September 1, 2004
Creator: Feddema, John Todd; Parker, Eric Paul; Wagner, John S. & Schoenwald, David Alan
Object Type: Report
System: The UNT Digital Library
Medical waste management plan. (open access)

Medical waste management plan.

This plan describes the process for managing research generated medical waste at Sandia National Laboratories/California. It applies to operations at the Chemical and Radiation Detection Laboratory (CRDL), Building 968, and other biosafety level 1 or 2 activities at the site. It addresses the accumulation, storage, treatment and disposal of medical waste and sharps waste. It also describes the procedures to comply with regulatory requirements and SNL policies applicable to medical waste.
Date: December 1, 2004
Creator: Lane, Todd W. & VanderNoot, Victoria A.
Object Type: Report
System: The UNT Digital Library
Temperature rise of the mask-resist assembly during LIGA exposure. (open access)

Temperature rise of the mask-resist assembly during LIGA exposure.

Deep X-ray lithography on PMMA resist is used in the LIGA process. The resist is exposed to synchrotron X-rays through a patterned mask and then is developed in a liquid developer to make high aspect ratio microstructures. The limitations in dimensional accuracies of the LIGA generated microstructure originate from many sources, including synchrotron and X-ray physics, thermal and mechanical properties of mask and resist, and from the kinetics of the developer. This work addresses the thermal analysis and temperature rise of the mask-resist assembly during exposure in air at the Advanced Light Source (ALS) synchrotron. The concern is that dimensional errors generated at the mask and the resist due to thermal expansion will lower the accuracy of the lithography. We have developed a three-dimensional finite-element model of the mask and resist assembly that includes a mask with absorber, a resist with substrate, three metal holders, and a water-cooling block. We employed the LIGA exposure-development software LEX-D to calculate volumetric heat sources generated in the assembly by X-ray absorption and the commercial software ABAQUS to calculate heat transfer including thermal conduction inside the assembly, natural and forced convection, and thermal radiation. at assembly outer and/or inner surfaces. The calculations of assembly …
Date: November 1, 2004
Creator: Ting, Aili
Object Type: Report
System: The UNT Digital Library
Estimation of the parameter covariance matrix for aone-compartment cardiac perfusion model estimated from a dynamic sequencereconstructed using map iterative reconstruction algorithms (open access)

Estimation of the parameter covariance matrix for aone-compartment cardiac perfusion model estimated from a dynamic sequencereconstructed using map iterative reconstruction algorithms

In dynamic cardiac SPECT estimates of kinetic parameters ofa one-compartment perfusion model are usually obtained in a two stepprocess: 1) first a MAP iterative algorithm, which properly models thePoisson statistics and the physics of the data acquisition, reconstructsa sequence of dynamic reconstructions, 2) then kinetic parameters areestimated from time activity curves generated from the dynamicreconstructions. This paper provides a method for calculating thecovariance matrix of the kinetic parameters, which are determined usingweighted least squares fitting that incorporates the estimated varianceand covariance of the dynamic reconstructions. For each transaxial slicesets of sequential tomographic projections are reconstructed into asequence of transaxial reconstructions usingfor each reconstruction inthe time sequence an iterative MAP reconstruction to calculate themaximum a priori reconstructed estimate. Time-activity curves for a sumof activity in a blood region inside the left ventricle and a sum in acardiac tissue region are generated. Also, curves for the variance of thetwo estimates of the sum and for the covariance between the two ROIestimates are generated as a function of time at convergence using anexpression obtained from the fixed-point solution of the statisticalerror of the reconstruction. A one-compartment model is fit to the tissueactivity curves assuming a noisy blood input function to give weightedleast squares …
Date: January 1, 2004
Creator: Gullberg, Grant T.; Huesman, Ronald H.; Reutter, Bryan W.; Qi,Jinyi & Ghosh Roy, Dilip N.
Object Type: Report
System: The UNT Digital Library
Alignment of the MINOS FD (open access)

Alignment of the MINOS FD

The results and procedure of the alignment of the MINOS Far Detector are presented. The far detector has independent alignments of SM1 and SM2. The misalignments have an estimated uncertainty of {approx}850 {micro}m for SM1 and {approx}750 {micro}m for SM2. The alignment has as inputs the average rotations of U and V as determined by optical survey and strip positions within modules measured from the module mapper. The output of this is a module-module correction for transverse mis-alignments. These results were verified by examining an independent set of data. These alignment constants on average contribute much less then 1% to the total uncertainty in the transverse strip position.
Date: November 1, 2004
Creator: Becker, B. & Boehnlein, D.
Object Type: Report
System: The UNT Digital Library
Scalable fault tolerant algorithms for linear-scaling coupled-cluster electronic structure methods. (open access)

Scalable fault tolerant algorithms for linear-scaling coupled-cluster electronic structure methods.

By means of coupled-cluster theory, molecular properties can be computed with an accuracy often exceeding that of experiment. The high-degree polynomial scaling of the coupled-cluster method, however, remains a major obstacle in the accurate theoretical treatment of mainstream chemical problems, despite tremendous progress in computer architectures. Although it has long been recognized that this super-linear scaling is non-physical, the development of efficient reduced-scaling algorithms for massively parallel computers has not been realized. We here present a locally correlated, reduced-scaling, massively parallel coupled-cluster algorithm. A sparse data representation for handling distributed, sparse multidimensional arrays has been implemented along with a set of generalized contraction routines capable of handling such arrays. The parallel implementation entails a coarse-grained parallelization, reducing interprocessor communication and distributing the largest data arrays but replicating as many arrays as possible without introducing memory bottlenecks. The performance of the algorithm is illustrated by several series of runs for glycine chains using a Linux cluster with an InfiniBand interconnect.
Date: October 1, 2004
Creator: Leininger, Matthew L.; Nielsen, Ida Marie B. & Janssen, Curtis L.
Object Type: Report
System: The UNT Digital Library
Validation data for models of contaminant dispersal : scaling laws and data needs. (open access)

Validation data for models of contaminant dispersal : scaling laws and data needs.

Contaminant dispersal models for use at scales ranging from meters to miles are widely used for planning sensor locations, first-responder actions for release scenarios, etc. and are constantly being improved. Applications range from urban contaminant dispersal to locating buried targets from an exhaust signature. However, these models need detailed data for model improvement and validation. A small Sandia National Laboratories Laboratory Directed Research and Development (LDRD) program was funded in FY04 to examine the feasibility and usefulness of a scale-model capability for quantitative characterization of flow and contaminant dispersal in complex environments. This report summarizes the work performed in that LDRD. The basics of atmospheric dispersion and dispersion modeling are reviewed. We examine the need for model scale data, and the capability of existing model test methods. Currently, both full-scale and model scale experiments are performed in order to collect validation data for numerical models. Full-scale experiments are expensive, are difficult to repeat, and usually produce relatively sparse data fields. Model scale tests often employ wind tunnels, and the data collected is, in many cases, derived from single point measurements. We review the scaling assumptions and methods that are used to relate model and full scale flows. In particular, we …
Date: September 1, 2004
Creator: O'Hern, Timothy John & Ceccio, Steven Louis (University of Michigan, Ann Arbor, MI)
Object Type: Report
System: The UNT Digital Library
P3 microengine development at Washington State University. (open access)

P3 microengine development at Washington State University.

There is a pressing need for miniaturized power systems for a variety of applications requiring a long life in the field of operations. Such power systems are required to be capable of providing power for months to years of operation, which all but eliminates battery technologies and technologies that bring their own fuel systems (except for nuclear fuel systems, which have their own drawbacks) due to constraints of having the all of the chemical fuel necessary for the entire life of the operational run available at the starting point of the operation. Alternatively, harvesting energy directly from the local environment obviates this need for bringing along all of the fuel necessary for operation. Instead, locally available energy, either in the form of chemical, thermal, light, or motion can be harvested and converted into electrical energy for use in sensor applications. The work from this LDRD is focused on developing a thermal engine that can take scavenged thermal gradients and convert them into direct electrical energy. The converter system is a MEMS based external combustion engine that uses a modified Stirling cycle to generate mechanical work on a piezoelectric generator. This piezoelectric generator then produced an AC voltage and current that …
Date: December 1, 2004
Creator: Whalen, Scott (Washington State University, Pullman, WA) & Apblett, Christopher Alan
Object Type: Report
System: The UNT Digital Library
Matrixed business support comparison study. (open access)

Matrixed business support comparison study.

The Matrixed Business Support Comparison Study reviewed the current matrixed Chief Financial Officer (CFO) division staff models at Sandia National Laboratories. There were two primary drivers of this analysis: (1) the increasing number of financial staff matrixed to mission customers and (2) the desire to further understand the matrix process and the opportunities and challenges it creates.
Date: November 1, 2004
Creator: Parsons, Josh D.
Object Type: Report
System: The UNT Digital Library
Final report : compliant thermo-mechanical MEMS actuators, LDRD #52553. (open access)

Final report : compliant thermo-mechanical MEMS actuators, LDRD #52553.

Thermal actuators have proven to be a robust actuation method in surface-micromachined MEMS processes. Their higher output force and lower input voltage make them an attractive alternative to more traditional electrostatic actuation methods. A predictive model of thermal actuator behavior has been developed and validated that can be used as a design tool to customize the performance of an actuator to a specific application. This tool has also been used to better understand thermal actuator reliability by comparing the maximum actuator temperature to the measured lifetime. Modeling thermal actuator behavior requires the use of two sequentially coupled models, the first to predict the temperature increase of the actuator due to the applied current and the second to model the mechanical response of the structure due to the increase in temperature. These two models have been developed using Matlab for the thermal response and ANSYS for the structural response. Both models have been shown to agree well with experimental data. In a parallel effort, the reliability and failure mechanisms of thermal actuators have been studied. Their response to electrical overstress and electrostatic discharge has been measured and a study has been performed to determine actuator lifetime at various temperatures and operating …
Date: December 1, 2004
Creator: Walraven, Jeremy Allen; Baker, Michael Sean; Headley, Thomas Jeffrey & Plass, Richard Anton
Object Type: Report
System: The UNT Digital Library
Hohlraum-driven ignition-like double-shell implosions on the Omega laser facility (open access)

Hohlraum-driven ignition-like double-shell implosions on the Omega laser facility

High-convergence ignition-like double-shell implosion experiments have been performed on the Omega laser facility [T.R. Boehly et al., Opt. Commun. 133, 495 (1997)] using cylindrical gold hohlraums with 40 drive beams. Repeatable, dominant primary (2.45 MeV) neutron production from the mix-susceptible compressional phase of a double-shell implosion, using fall-line design optimization and exacting fabrication standards, is experimentally inferred from time-resolved core x-ray imaging. Effective control of fuel-pusher mix during final compression is essential for achieving noncryogenic ignition with double-shell targets on the National Ignition Facility [Paisner et al., Laser Focus World 30, 75 (1994)].
Date: October 1, 2004
Creator: Amendt, P.; Robey, H. F.; Park, H. S.; Tipton, R. E.; Turner, R. E.; Milovich, J. L. et al.
Object Type: Article
System: The UNT Digital Library
Performance characteristics of a cosmology package on leading HPCarchitectures (open access)

Performance characteristics of a cosmology package on leading HPCarchitectures

The Cosmic Microwave Background (CMB) is a snapshot of the Universe some 400,000 years after the Big Bang. The pattern of anisotropies in the CMB carries a wealth of information about the fundamental parameters of cosmology. Extracting this information is an extremely computationally expensive endeavor, requiring massively parallel computers and software packages capable of exploiting them. One such package is the Microwave Anisotropy Dataset Computational Analysis Package (MADCAP) which has been used to analyze data from a number of CMB experiments. In this work, we compare MADCAP performance on the vector-based Earth Simulator (ES) and Cray X1 architectures and two leading superscalar systems, the IBM Power3 and Power4. Our results highlight the complex interplay between the problem size, architectural paradigm, interconnect, and vendor-supplied numerical libraries, while isolating the I/O file system as the key bottleneck across all the platforms.
Date: January 1, 2004
Creator: Carter, Jonathan; Borrill, Julian & Oliker, Leonid
Object Type: Article
System: The UNT Digital Library
Advance Abrasion Resistant Materials for Mining (open access)

Advance Abrasion Resistant Materials for Mining

The high-density infrared (HDI) transient-liquid coating (TLC) process was successfully developed and demonstrated excellent, enhanced (5 times higher than the current material and process) wear performance for the selected functionally graded material (FGM) coatings under laboratory simulated, in-service conditions. The mating steel component exhibited a wear rate improvement of approximately one and a half (1.5) times. After 8000 cycles of. wear testing, the full-scale component testing demonstrated that the coating integrity was still excellent. Little or no spalling was observed to occur.
Date: June 1, 2004
Creator: Mackiewicz-Ludtka, G.
Object Type: Report
System: The UNT Digital Library
Meso-scale controlled motion for a microfluidic drop ejector. (open access)

Meso-scale controlled motion for a microfluidic drop ejector.

The objective of this LDRD was to develop a uniquely capable, novel droplet solution based manufacturing system built around a new MEMS drop ejector. The development all the working subsystems required was completed, leaving the integration of these subsystems into a working prototype still left to accomplish. This LDRD report will focus on the three main subsystems: (1) MEMS drop ejector--the MEMS ''sideshooter'' effectively ejected 0.25 pl drops at 10 m/s, (2) packaging--a compact ejector package based on a modified EMDIP (Electro-Microfluidic Dual In-line Package--SAND2002-1941) was fabricated, and (3) a vision/stage system allowing precise ejector package positioning in 3 dimensions above a target was developed.
Date: December 1, 2004
Creator: Galambos, Paul C.; Givler, Richard C.; Pohl, Kenneth Roy; Czaplewski, David A.; Luck, David L.; Braithwaite, Mark J. et al.
Object Type: Report
System: The UNT Digital Library
Red River Wildlife Management Area HEP Report, Habitat Evaluation Procedures, Technical Report 2004. (open access)

Red River Wildlife Management Area HEP Report, Habitat Evaluation Procedures, Technical Report 2004.

A habitat evaluation procedures (HEP) analysis conducted on the 314-acre Red River Wildlife Management Area (RRWMA) managed by the Idaho Department of Fish and Game resulted in 401.38 habitat units (HUs). Habitat variables from six habitat suitability index (HSI) models, comprised of mink (Mustela vison), mallard (Anas platyrhynchos), common snipe (Capella gallinago), black-capped chickadee (Parus altricapillus), yellow warbler (Dendroica petechia), and white-tailed deer (Odocoileus virginianus), were measured by Regional HEP Team (RHT) members in August 2004. Cover types included wet meadow, riverine, riparian shrub, conifer forest, conifer forest wetland, and urban. HSI model outputs indicate that the shrub component is lacking in riparian shrub and conifer forest cover types and that snag density should be increased in conifer stands. The quality of wet meadow habitat, comprised primarily of introduced grass species and sedges, could be improved through development of ephemeral open water ponds and increasing the amount of persistent wetland herbaceous vegetation e.g. cattails (Typha spp.) and bulrushes (Scirpus spp.).
Date: November 1, 2004
Creator: Ashley, Paul
Object Type: Report
System: The UNT Digital Library
Lipid membranes on nanostructured silicon. (open access)

Lipid membranes on nanostructured silicon.

A unique composite nanoscale architecture that combines the self-organization and molecular dynamics of lipid membranes with a corrugated nanotextured silicon wafer was prepared and characterized with fluorescence microscopy and scanning probe microscopy. The goal of this project was to understand how such structures can be assembled for supported membrane research and how the interfacial interactions between the solid substrate and the soft, self-assembled material create unique physical and mechanical behavior through the confinement of phases in the membrane. The nanometer scale structure of the silicon wafer was produced through interference lithography followed by anisotropic wet etching. For the present study, a line pattern with 100 nm line widths, 200 nm depth and a pitch of 360 nm pitch was fabricated. Lipid membranes were successfully adsorbed on the structured silicon surface via membrane fusion techniques. The surface topology of the bilayer-Si structure was imaged using in situ tapping mode atomic force microscopy (AFM). The membrane was observed to drape over the silicon structure producing an undulated topology with amplitude of 40 nm that matched the 360 nm pitch of the silicon structure. Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale those same structures exhibit anisotropic lipid mobility that …
Date: December 1, 2004
Creator: Slade, Andrea Lynn; Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Ista, Linnea K. (University of New Mexico, Albuquerque, NM); O'Brien, Michael J. (University of New Mexico, Albuquerque, NM); Sasaki, Darryl Yoshio; Bisong, Paul (University of New Mexico, Albuquerque, NM) et al.
Object Type: Report
System: The UNT Digital Library
Revolutionary systems for catalytic combustion and diesel catalytic particulate traps. (open access)

Revolutionary systems for catalytic combustion and diesel catalytic particulate traps.

This report is a summary of an LDRD project completed for the development of materials and structures conducive to advancing the state of the art for catalyst supports and diesel particulate traps. An ancillary development for bio-medical bone scaffolding was also realized. Traditionally, a low-pressure drop catalyst support, such as a ceramic honeycomb monolith, is used for catalytic reactions that require high flow rates of gases at high-temperatures. A drawback to the traditional honeycomb monoliths under these operating conditions is poor mass transfer to the catalyst surface in the straight-through channels. ''Robocasting'' is a unique process developed at Sandia National Laboratories that can be used to manufacture ceramic monoliths with alternative 3-dimensional geometries, providing tortuous pathways to increase mass transfer while maintaining low-pressure drops. These alternative 3-dimensional geometries may also provide a foundation for the development of self-regenerating supports capable of trapping and combusting soot particles from a diesel engine exhaust stream. This report describes the structures developed and characterizes the improved catalytic performance that can result. The results show that, relative to honeycomb monolith supports, considerable improvement in mass transfer efficiency is observed for robocast samples synthesized using an FCC-like geometry of alternating rods. Also, there is clearly a …
Date: December 1, 2004
Creator: Stuecker, John Nicholas; Witze, Peter O.; Ferrizz, Robert Matthew; Cesarano, Joseph, III & Miller, James Edward
Object Type: Report
System: The UNT Digital Library
LDRD final report on new homogeneous and supported oligomerization catalysts (LDRD 42461). (open access)

LDRD final report on new homogeneous and supported oligomerization catalysts (LDRD 42461).

The overall purpose of this LDRD is multifold. First, we are interested in preparing new homogeneous catalysts that can be used in the oligomerization of ethylene and in understanding commercially important systems better. Second, we are interested in attempting to support these new homogeneous catalysts in the pores of nano- or mesoporous materials in order to force new and unusual distributions of a-olefins to be formed during the oligomerization. Thus the overall purpose is to try to prepare new catalytic species and to possibly control the active site architecture in order to yield certain desired products during a catalytic reaction, much like nature does with enzymes. In order to rationally synthesize catalysts it is imperative to comprehend the function of the various components of the catalyst. In heterogeneous systems, it is of utmost importance to know how a support interacts with the active site of the catalyst. In fact, in the catalysis world this lack of fundamental understanding of the relationship between active site and support is the single largest reason catalysis is considered an 'empirical' or 'black box' science rather than a well-understood one. In this work we will be preparing novel ethylene oligomerization catalysts, which are normally P-O …
Date: November 1, 2004
Creator: Hascall, Anthony G. & Kemp, Richard Alan
Object Type: Report
System: The UNT Digital Library