IEMDC-In-Line Electric Motor Driven Compressor Quarterly Report (open access)

IEMDC-In-Line Electric Motor Driven Compressor Quarterly Report

Dresser-Rand completed the preliminary aerodynamic flowpath of the volute and inlet design for the compressor section. This has resulted in considerable progress being made on the development of the compressor section and ultimately towards the successful integration of the IEMDC System design. Significant effort was put forth in the design of aerodynamic components which resulted in a design that meets the limits of aerodynamically induced radial forces previously established. Substantial effort has begun on the mechanical design of the compressor pressure containing case and other internal components. These efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. All efforts continue to confirm the feasibility of the IEMDC system design. During the third quarter reporting period, the focus was to further refine the motor design and to ensure that the IEMDC rotor system supported on magnetic bearing is in compliance with the critical speed and vibration requirements of the API standards 617 and 541. Consequently specification to design magnetic bearings was developed and an RFQ to three magnetic bearing suppliers was issued. Considerable work was also performed to complete preliminary reports on some of the deliverable tasks under phase …
Date: January 1, 2004
Creator: Crowley, Michael J.; Bansal, Prem N. & Tessaro, John E.
System: The UNT Digital Library
IEMDC-In-Line Electric Motor Driven Compressor Quarterly Report (open access)

IEMDC-In-Line Electric Motor Driven Compressor Quarterly Report

During this reporting period, significant progress has been made towards the development of the IEMDC System design. Considerable effort was put forth by Curtiss-Wright EMD in the resolution of the technical issue of aerodynamically induced radial forces. This has provided a design basis with which to establish the radial magnetic bearing load capacity and the rotordynamic design. Dresser-Rand has made considerable progress on the flowpath design for the compressor section particularly on the volute and inlet aerodynamic design. All efforts show progression towards the successful integration of a centrifugal compressor and variable speed electric motor ventilated by the process gas. These efforts continue to confirm the feasibility of the IEMDC system design.
Date: June 1, 2003
Creator: Crowley, Michael J.; Bansal, Prem N. & Tessaro, John E.
System: The UNT Digital Library
IEMDC-In-Line Electric Motor Driven Compressor Quarterly Report (open access)

IEMDC-In-Line Electric Motor Driven Compressor Quarterly Report

Considerable effort was put forth on the mechanical design of the compressor section of the IEMDC. These efforts focused on the main compressor case design and included an evaluation of the motor-compressor interface. The initial mechanical evaluation of the compressor motor interface indicates that the integration of an electric motor and compressor can be made successfully. All mechanical design efforts resulted in considerable progress being made towards the completion of the mechanical design of the compressor section and towards the design of the IEMDC unit. During the fourth quarter, one of the primary objectives was to select the magnetic bearing supplier and to begin finalizing the design of various motor components. Consequently, the design proposals from the three magnetic bearing suppliers were evaluated and Kingsbury magnetic Bearings (KMB) was selected for the design of the magnetic bearing system. A purchase order was issued to KMB and design kick-off meeting was held at EMD on December 11, 2003 with the KMB/S2M/DR teams, to discuss the project requirements. A joint DR/EMD/Robicon IEMDC Compressor-Motor-VFD Drive technical status update presentation was prepared, and was presented at the GMRC meeting on October 5, 2003 at Salt Lake City, UT. Considerable effort was expended in evaluating …
Date: January 1, 2004
Creator: Crowley, Michael J.; Bansal, Prem N. & Tessaro, John E.
System: The UNT Digital Library