A new technique for measuring the separation of closely spaced dislocations using residual contrast conditions (open access)

A new technique for measuring the separation of closely spaced dislocations using residual contrast conditions

In order to measure the spacing of closely spaced dislocations, a method with sufficient spatial resolution must be used. The author presents a method for measuring such spatial resolution. Applications of this method to copper, NiAl, and Ni{sub 3}Al will be discussed.
Date: February 1, 1995
Creator: Angelo, J. E. & Mills, M. J.
Object Type: Article
System: The UNT Digital Library
The Genetic Privacy Act and commentary (open access)

The Genetic Privacy Act and commentary

The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. Therefore, to effectively protect genetic privacy unauthorized collection and analysis of individually identifiable DNA must be prohibited. As a result, the premise of the Act is that no stranger should have or control identifiable DNA samples or genetic information about an individual unless that individual specifically authorizes the collection of DNA samples for the purpose of genetic analysis, authorized the creation of that private information, and has access to and control over the dissemination of that information.
Date: February 28, 1995
Creator: Annas, G. J.; Glantz, L. H. & Roche, P. A.
Object Type: Report
System: The UNT Digital Library
The Genetic Privacy Act and commentary (open access)

The Genetic Privacy Act and commentary

The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. The DNA molecule holds an extensive amount of currently indecipherable information. The major goal of the Human Genome Project is to decipher this code so that the information it contains is accessible. The privacy question is, accessible to whom? The highly personal nature of the information contained in DNA can be illustrated by thinking of DNA as containing an individual`s {open_quotes}future diary.{close_quotes} A diary is perhaps the most personal and private document a person can create. It contains a person`s innermost thoughts and perceptions, and is usually hidden and locked to assure its secrecy. Diaries describe the past. The information in one`s genetic code can be thought of as a coded probabilistic future diary because it describes an important part of a unique and personal future. This document presents an introduction to the proposal for federal legislation `the Genetic Privacy Act`; a copy of the proposed act; and comment.
Date: February 28, 1995
Creator: Annas, G.J.; Glantz, L. H. & Roche, P. A.
Object Type: Report
System: The UNT Digital Library
Analytical considerations in the code qualification of piping systems (open access)

Analytical considerations in the code qualification of piping systems

The paper addresses several analytical topics in the design and qualification of piping systems which have a direct bearing on the prediction of stresses in the pipe and hence on the application of the equations of NB, NC and ND-3600 of the ASME Boiler and Pressure Vessel Code. For each of the analytical topics, the paper summarizes the current code requirements, if any, and the industry practice.
Date: February 1, 1995
Creator: Antaki, G. A.
Object Type: Article
System: The UNT Digital Library
Broken flavor symmetries in high energy particle phenomenology (open access)

Broken flavor symmetries in high energy particle phenomenology

Over the past couple of decades, the Standard Model of high energy particle physics has clearly established itself as an invaluable tool in the analysis of high energy particle phenomenon. However, from a field theorists point of view, there are many dissatisfying aspects to the model. One of these, is the large number of free parameters in the theory arising from the Yukawa couplings of the Higgs doublet. In this thesis, we examine various issues relating to the Yukawa coupeng structure of high energy particle field theories. We begin by examining extensions to the Standard Model of particle physics which contain additional scalar fields. By appealing to the flavor structure observed in the fermion mass and Kobayashi-Maskawa matrices, we propose a reasonable phenomenological parameterization of the new Yukawa couplings based on the concept of approximate flavor symmetries. It is shown that such a parameterization eliminates the need for discrete symmetries which limit the allowed couplings of the new scalars. New scalar particles which can mediate exotic flavor changing reactions can have masses as low as the weak scale. Next, we turn to the issue of neutrino mass matrices, where we examine a particular texture which leads to matter independent neutrino …
Date: February 22, 1995
Creator: Antaramian, A.
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Phase correction in two-crystal optical parametric oscillators (open access)

Phase correction in two-crystal optical parametric oscillators

The effect of the pump, signal, and idler wave phases on three-wave nonlinear parametric mixing is investigated in a series of single-pass-gain experiments. Measurements are made with two angle-tuned KTP crystals in a 532 nm pumped, walkoff-compensated, optical parametric amplifier that is seeded by an 800 nm cw diode laser. In one of the measurements the second crystal is orientated to have its effective nonlinearity d{sub eff.} of opposite sign to that of the first crystal, so that all mixing that occurred in the first crystal is cancelled by the second when the phase mismatch {Delta}k{sub crystal 1} = {Delta}k{sub crystal 2} = 0. Efficient two-crystal amplification is subsequently restored by selecting the correct phase relationship for the three waves entering the crystal by inserting a dispersive plate between the crystals. The experimental results are explained in a straightforward manner with diagrams involving the three input wave polarizations. These results demonstrate that walkoff-compensated geometries require phase correction to achieve efficient mixing in the second crystal whenever the nonlinear interaction involves two extraordinary waves (e-waves). One practical application of this work may be lower oscillation thresholds and enhanced performance in walkoff-compensated optical parametric oscillators which use two e-waves.
Date: February 1, 1995
Creator: Armstron, D. J.; Alford, W. J.; Raymond, T. D. & Smith, A. V.
Object Type: Article
System: The UNT Digital Library
Special case waste hazard categorization. Revision 1 (open access)

Special case waste hazard categorization. Revision 1

In this document, the hazard categorization is determined for activities associated with Project W-272, Special Case Waste (SWC) Storage Modules that will be placed on concrete slabs in the Solid Waste Operations Complex (SWOC) in the 200 West Area of the Hanford site. In this categorization, the activities that take place within the boundaries of the SWOC are addressed; therefore, only the receipt, offloading, handling, and storing of the Special Case Waste at the SWOC are of concern. This revision updates the radioactive material inventory, reverses the assumption that the SCW meets the criteria of Packaging and Transportation of Radioactive Materials (10 CFR 71), Section 71.75, Qualification of Special Form Radioactive Material, and evaluates the project based upon the criteria and guidance provided by US Department of Energy (DOE)-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports. The Pacific Northwest Laboratory Building 324 B-Cell waste inventory consists of reactor fuel, irradiated fuel, fuel cladding, and vitrified forms of these fuel elements. The waste contains no toxic chemicals or hydrogenous materials. The proposed storage method is placement of the SCW in special waste overpacks (SWOs) that are then placed in a vendor-provided canister …
Date: February 2, 1995
Creator: Armstrong, D. L.
Object Type: Report
System: The UNT Digital Library
Small-scale AFBC-hot air gas turbine power cycle (open access)

Small-scale AFBC-hot air gas turbine power cycle

The Energy and Environmental Research Corporation (EER), the Ohio Agricultural Research and Development Center (OARDC), the Will-Burt Company (W-B) and the U.S. Department of Energy (DOE) have successfully developed and completed pilot plant tests on a small scale atmospheric fluidized bed combustion (AFBC) system. This system can be used to generate electricity, and/or hot water, steam. Following successful pilot plant operation, commercial demonstration will take place at Cedar Lane Farms (CLF), near Wooster, Ohio. The system demonstration will be completed by the end of 1995. The project is being funded through a cooperative effort between the DOE, EER, W-B, OARDC, CLF and the Ohio Coal Development Office (OCDO). The small scale AFBC, has no internal heat transfer surfaces in the fluid bed proper. Combining the combustor with a hot air gas turbine (HAGT) for electrical power generation, can give a relatively high overall system thermal efficiency. Using a novel method of recovering waste heat from the gas turbine, a gross heat rate of 13,500 Btu/kWhr ({approximately}25% efficiency) can be achieved for a small 1.5 MW, plant. A low technology industrial recuperation type gas turbine is used that operates with an inlet blade temperature of 1450{degrees}F and a compression ratio of …
Date: February 1, 1995
Creator: Ashworth, Robert C.; Keener, Harold M. & Hall, Arthur W.
Object Type: Article
System: The UNT Digital Library
Bubble chamber spectroscopy for chemical analysis: A new concept (open access)

Bubble chamber spectroscopy for chemical analysis: A new concept

A new technique for the detection of trace concentrations of molecules in solution has been developed. This system utilizes the amplification characteristics of a bubble chamber in which energy deposition from laser absorption is monitored. In the experimental set-up, a trace quantity of solute is introduced into liquid propane that is contained in a small (10 ml) stainless steel cell at 120 psi. The propane is superheated by sudden reduction of the cell pressure. Before wall nucleated boiling occurs, target solute molecules are energized by a laser pulse. Absorption of pump laser energy results in the formation of nucleation centers which develop into bubbles and which in turn are detected by CCD camera. Preliminary experiments with crystal violet used as a test absorber have demonstrated detection sensitivity of 10 parts per trillion (ppt).
Date: February 1, 1995
Creator: Atencio, J. H.; Luo, Xin; McCreary, E. I.; McCown, A. W. & Sander, R. K.
Object Type: Article
System: The UNT Digital Library
Summary report for ITER task - D4: Activation calculations for the lithium vanadium ITER design (open access)

Summary report for ITER task - D4: Activation calculations for the lithium vanadium ITER design

Detailed activation analysis for ITER has been performed as a part of ITER Task D4. The calculations have been performed for the shielding blanket (SS/water) and for the breeding blanket (Li/V) options. The activation code RACC-P, which has been modified under ITER Task-D-10 for pulsed operation, has been used in this analysis. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loading of 0.91 and 1.2 MW/m{sup 2}, respectively. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two designs and are then used in the transport code ONEDANT to calculate the biological dose everywhere in the reactor. The point-wise distributions of all the responses have also been calculated. These calculations have been performed for neutron fluences of 3.0 MWa/m{sup 2}, which corresponds to the target fluence of ITER, and 0.1 MWa/m{sup 2}, which is anticipated to correspond …
Date: February 1, 1995
Creator: Attaya, H.
Object Type: Report
System: The UNT Digital Library
Summary report for ITER Task -- D4: Activation calculations for the stainless steel ITER design (open access)

Summary report for ITER Task -- D4: Activation calculations for the stainless steel ITER design

Detailed activation analysis for ITER has been performed as a part of ITER Task D4. The calculations have been performed for the shielding blanket (SS/water) and for the breeding blanket (LiN) options. The activation code RACC-P, which has been modified under IFER Task-D-10 for pulsed operation, has been used in this analysis. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loadings of 0.91 and 1.2 MW/M{sup 2}, respectively. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two designs and are then used in the transport code ONEDANT to calculate the biological dose everywhere in the reactor. The point-wise distributions of all the responses have also been calculated. These calculations have been performed for neutron fluences of 3.0 MWa/M{sup 2}, which corresponds to the target fluence of ITER, and 0.1 MWa/M{sup 2}, which is anticipated to correspond …
Date: February 1, 1995
Creator: Attaya, H.
Object Type: Report
System: The UNT Digital Library
The heavy electron state. Final report, February 1, 1991--August 31, 1994 (open access)

The heavy electron state. Final report, February 1, 1991--August 31, 1994

Theoretical studies of electron interactions in two families of novel materials were conducted. The temperature-concentration phase diagram of doped bismuthate superconductors was described using a coarse grained anisotropic Heisenberg model. A simplified model of electron interactions on buckminsterfullerene was studied. A simple model for electron-vibron interactions on charged buckminsterfullerene C{sub 60}{sup n {minus}}, was solved at both weak and strong couplings.
Date: February 13, 1995
Creator: Auerbach, A.
Object Type: Report
System: The UNT Digital Library
Engineered materials for appliation in severe metallurgical environments; Tantalum-carbon alloy development (open access)

Engineered materials for appliation in severe metallurgical environments; Tantalum-carbon alloy development

A suite of investigations has been completed to develop and demonstrate a construction material for use in severely corrosive metallurgical processing environments. The material is a tantalum-base alloy with inclusions of Ta{sub 2}C. Alloy development work involved multi-step thermal processing to invoke specific microstructural features. The kinetics of carbide formation from supersaturated solid solutions of carbon in tantalum were established. Performance evaluation of the alloy was conducted and the alloy has been demonstrated to outperform any previously studied metallic construction material used in pyrometallurgical processing of plutonium. Specific microstructural features of the alloy have been identified which provide the extreme corrosion resistance. Grain boundary occupancy by the Ta{sub 2}C phase is associated with the corrosion resistance to liquid metal. Precipitation from the supersaturated condition invokes a microstructure with the most significant grain boundary delineation by carbide inclusions and hence provides the most corrosion resistant attributes. It has been experimentally proven that the precipitate growth rate is not dictated solely by the diffusion rate of the interstitial species and is more complex. The observed growth rate of carbide precipitates involves several competing effects.
Date: February 1, 1995
Creator: Axler, K. M.
Object Type: Report
System: The UNT Digital Library
Studies of fluctuation processes in nuclear collisions. Progress report, May 1, 1994--February 28, 1995 (open access)

Studies of fluctuation processes in nuclear collisions. Progress report, May 1, 1994--February 28, 1995

This report discusses the following topics: Memory effect in Boltzmann-Langevin model; effect of memory time on agitation of unstable modes in nuclear matter; and non-markovian approach to damping of giant monopole resonances in nuclei.
Date: February 1, 1995
Creator: Ayik, S.
Object Type: Report
System: The UNT Digital Library
Progress in resolving Hanford Site high-level waste tank safety issues (open access)

Progress in resolving Hanford Site high-level waste tank safety issues

Interim storage of alkaline, high-level radioactive waste, from two generations of spent fuel reprocessing and waste management activities, has resulted in the accumulation of 238 million liters of waste in Hanford Site single and double-shell tanks. Before the 1990`s, the stored waste was believed to be: (1) chemically unreactive under its existing storage conditions and plausible accident scenarios; and (2) chemically stable. This paradigm was proven incorrect when detailed evaluation of tank contents and behavior revealed a number of safety issues and that the waste was generating flammable and noxious gases. In 1990, the Waste Tank Safety Program was formed to focus on identifying safety issues and resolving the ferrocyanide, flammable gas, organic, high heat, noxious vapor, and criticality issues. The tanks of concern were placed on Watch Lists by safety issue. This paper summarizes recent progress toward resolving Hanford Site high-level radioactive waste tank safety issues, including modeling, and analyses, laboratory experiments, monitoring upgrades, mitigation equipment, and developing a strategy to screen tanks for safety issues.
Date: February 1, 1995
Creator: Babad, H.; Eberlein, S. J.; Johnson, G. D.; Meacham, J. E.; Osborne, J. W.; Payne, M. A. et al.
Object Type: Article
System: The UNT Digital Library
Transport of subsurface bacteria in porous media (open access)

Transport of subsurface bacteria in porous media

The primary objective of this study was to develop tools with which to measure the advective transport of microorganisms through porous media. These tools were then applied to investigate the sorptive properties of representative microorganisms that were selected at random from the DOE`s deep subsurface collection of bacterial, maintained at Florida State University. The transport screening procedure that arose from this study was also used to investigate biological factors that affect the transport/sorption of biocolloids during their movement through porous media with the bulk advective flow.
Date: February 1, 1995
Creator: Bales, R. C.; Arnold, R. G. & Gerba, C. P.
Object Type: Report
System: The UNT Digital Library
A parametric study of double-shell tank response to internal high-frequency pressure loading (open access)

A parametric study of double-shell tank response to internal high-frequency pressure loading

The double-shell waste tank 241SY101 (SY101) is a 3,785,400-liter tank used to store radioactive waste at the Hanford Site near Richland, Washington. The tank waste has formed two layers of sludge in the tank; a convective and a nonconvective layer. Ongoing reactions in the waste cause a buildup of hydrogen molecules that become trapped within the nonconvective layer of the waste. Various means of preventing the buildup of hydrogen molecules in the nonconvective layer have been investigated, including the use of a sonic probe that would transmit high-frequency acoustic pressure waves into the nonconvective layer of the waste. During the operation of the sonic probe, the pressure waves transmitted from the probe induce pressure time history loading on the inside surface of the primary tank. For low-frequency fluid-structure interaction loads, such as those associated with seismic events, the convective and impulsive effects of the waste-filled tank are well documented. However, for high-frequency loading, such as that associated with acoustic pressure waves, interactions between the waste and the primary tank are not understood. The pressure time history is represented by a harmonic function with a frequency range between 30 and 100 Hz. Structural analyses of the double-shell tank have been performed …
Date: February 1, 1995
Creator: Baliga, R.; Choi, K.; Shulman, J.S.; Strehlow, J.P. & Abatt, G.
Object Type: Article
System: The UNT Digital Library
Neutronic study on conversion of SAFARI-1 to LEU silicide fuel (open access)

Neutronic study on conversion of SAFARI-1 to LEU silicide fuel

This paper marks the initial study into the technical and economic feasibility of converting the SAFARI-1 reactor in South Africa to LEU silicide fuel. Several MTR assembly geometries and LEU uranium densities have been studied and compared with MEU and HEU fuels. Two factors of primary importance for conversion of SAFARI-1 to LEU fuel are the economy of the fuel cycle and the performance of the incore and excore irradiation positions.
Date: February 1, 1995
Creator: Ball, G.; Pond, R.; Hanan, N. & Matos, J.
Object Type: Article
System: The UNT Digital Library
Groundwater flow velocity measurements in a sinkhole at the Weeks Island Strategic Petroleum Reserve Facility, Louisiana (open access)

Groundwater flow velocity measurements in a sinkhole at the Weeks Island Strategic Petroleum Reserve Facility, Louisiana

In 1992, a sinkhole was discovered above a Strategic Petroleum Reserve storage facility at Weeks Island, Louisiana. The oil is stored in an old salt mine located within a salt dome. In order to assess the hydrologic significance of the sink hole, an In Situ Permeable Flow Sensor was deployed within a sand-filled conduit in the salt dome directly beneath the sinkhole. The flow sensor is a recently developed instrument which uses a thermal perturbation technique to measure the magnitude and direction of the full 3-dimensional groundwater flow velocity vector in saturated, permeable materials. The flow sensor measured substantial groundwater flow directed vertically downward into the salt dome. The data obtained with the flow sensor provided critical evidence which was instrumental in assessing the significance of the sinkhole in terms of the integrity of the oil storage facility.
Date: February 1, 1995
Creator: Ballard, S. & Gibson, J.
Object Type: Article
System: The UNT Digital Library
Singular eigenfunctions for shearing fluids I (open access)

Singular eigenfunctions for shearing fluids I

The authors construct singular eigenfunctions corresponding to the continuous spectrum of eigenvalues for shear flow in a channel. These modes are irregular as a result of a singularity in the eigenvalue problem at the critical layer of each mode. They consider flows with monotonic shear, so there is only a single critical layer for each mode. They then solve the initial-value problem to establish that these continuum modes, together with any discrete, growing/decaying pairs of modes, comprise a complete basis. They also view the problem within the framework of Hamiltonian theory. In that context, the singular solutions can be viewed as the kernel of an integral, canonical transformation that allows us to write the fluid system, an infinite-dimensional Hamiltonian system, in action-angle form. This yields an expression for the energy in terms of the continuum modes and provides a means for attaching a characteristic signature (sign) to the energy associate with each eigenfunction. They follow on to consider shear-flow stability within the Hamiltonian framework. Next, the authors show the equivalence of integral superpositions of the singular eigenfunctions with the solution derived with Laplace transform techniques. In the long-time limit, such superpositions have decaying integral averages across the channel, revealing phase …
Date: February 1, 1995
Creator: Balmforth, N. J. & Morrison, P. J.
Object Type: Report
System: The UNT Digital Library
Nanostructure Multilayer Materials for Capacitor Energy Storage for Eh Vehicles (open access)

Nanostructure Multilayer Materials for Capacitor Energy Storage for Eh Vehicles

Acceleration and regenerative breaking for electric and hybrid vehicles require high power capacitors to complement energy sources. Large, flat nanostructure multilayer capacitors (NMCS) can provide load balancing capacitance in EHVs of the future. Additional uses include snubber capacitors for power electronics such as motor drives, energy discharge capacitors for lasers, and numerous industrial and military electronics applications [1]. In the present work, we demonstrate the effectiveness of LLNL`s multilayer materials technology by fabricating NMC test films with high energy and power density.
Date: February 1, 1995
Creator: Barbee, T. W., Jr. & Johnson, C. W.
Object Type: Report
System: The UNT Digital Library
Energy transfer properties and mechanisms. Technical progress report (open access)

Energy transfer properties and mechanisms. Technical progress report

Collisional energy transfer is the controlling factor in many nonequilibrium chemical systems: combustion, laser-induced chemical reactions, shock-heated gases, atmospheric chemistry, etc. During this period, efforts were made in 3 areas: large molecule energy transfer experiments (organic compounds); triatomic V-T/R energy transfer (memory effects); and energy transfer in extreme environments (shock tube data on norbornene). Results are described very briefly.
Date: February 3, 1995
Creator: Barker, J. R.
Object Type: Report
System: The UNT Digital Library
Plasma Lens Experiments at the Final Focus Test Beam (open access)

Plasma Lens Experiments at the Final Focus Test Beam

The authors intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. They will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam induced tunneling ionization of a working gas--the latter which has never been observed before. The compactness of the device should prove to be of interest for applications at the SLC and the next generation linear colliders.
Date: February 1, 1995
Creator: Barletta, W.; Chattopadhyay, S. & Chen, P.
Object Type: Article
System: The UNT Digital Library
Requirements and design concept for a facility mapping system (open access)

Requirements and design concept for a facility mapping system

The Department of Energy (DOE) has for some time been considering the Decontamination and Dismantlement (D&D) of facilities which are no longer in use, but which are highly contaminated with radioactive wastes. One of the holdups in performing the D&D task is the accumulation of accurate facility characterizations that can enable a safe and orderly cleanup process. According to the Technical Strategic Plan for the Decontamination and Decommissioning Integrated Demonstration, {open_quotes}the cost of characterization using current baseline technologies for approximately 100 acres of gaseous diffusion plant at Oak Ridge alone is, for the most part incalculable{close_quotes}. Automated, robotic techniques will be necessary for initial characterization and continued surveillance of these types of sites. Robotic systems are being designed and constructed to accomplish these tasks. This paper describes requirements and design concepts for a system to accurately map a facility contaminated with hazardous wastes. Some of the technologies involved in the Facility Mapping System are: remote characterization with teleoperated, sensor-based systems, fusion of data sets from multiple characterization systems, and object recognition from 3D data models. This Facility Mapping System is being assembled by Oak Ridge National Laboratory for the DOE Office of Technology Development Robotics Technology Development Program.
Date: February 1, 1995
Creator: Barry, R. E.; Burks, B. L. & Little, C. Q.
Object Type: Article
System: The UNT Digital Library