Direct Methane Conversion to Methanol (open access)

Direct Methane Conversion to Methanol

We proposed to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feedstock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. In the original proposal, the membrane was used to be used to selectively remove methanol from the reaction zone before carbon oxides form, thus increasing the methanol yield. Methanol synthesis and separation in one step would also make methane more valuable for producing chemicals and fuels. The cooling tube inserted inside the membrane reactor has created a low temperature zone that rapidly quenches the product stream. This system has proved effective for increasing methanol selectivity during CH[sub 4] oxidation, and we are using and modifying this non-isothermal, non-permselective membrane reactor.
Date: February 12, 1992
Creator: Noble, R. D. & Falconer, J. L.
System: The UNT Digital Library
Direct Methane Conversion to Methanol. Quarterly Project Status Report, October 1, 1992--December 31, 1992 (open access)

Direct Methane Conversion to Methanol. Quarterly Project Status Report, October 1, 1992--December 31, 1992

We proposed to demonstrate the effectiveness of a catalytic membrane reactor (a ceramic membrane combined with a catalyst) to selectively produce methanol by partial oxidation of methane. Methanol is used as a chemical feedstock, gasoline additive, and turbine fuel. Methane partial oxidation using a catalytic membrane reactor has been determined as one of the promising approaches for methanol synthesis from methane. In the original proposal, the membrane was used to be used to selectively remove methanol from the reaction zone before carbon oxides form, thus increasing the methanol yield. Methanol synthesis and separation in one step would also make methane more valuable for producing chemicals and fuels. The cooling tube inserted inside the membrane reactor has created a low temperature zone that rapidly quenches the product stream. This system has proved effective for increasing methanol selectivity during CH{sub 4} oxidation, and we are using and modifying this non-isothermal, non-permselective membrane reactor.
Date: February 12, 1992
Creator: Noble, R. D. & Falconer, J. L.
System: The UNT Digital Library
Rehabilitation Potential and Practices of Colorado Oil Shale Lands. Progress Report, June 1, 1976--May 31, 1977 (open access)

Rehabilitation Potential and Practices of Colorado Oil Shale Lands. Progress Report, June 1, 1976--May 31, 1977

Substantial progress has been made towards implementing all of the prescribed studies and satisfying the stated objectives since the Oil Shale Rehabilitation Project was actively initiated in June 1976. Concurrent with implementation, research objectives were substantively defined and supplemented without distracting or departing from the original purpose. Current studies are designed to fill voids in the present status of knowledge regarding lands disturbed by an impending oil shale industry in Colorado. The efforts of all contributing investigators have therefore been integrated and directed toward the goal of developing methodologies requisite for restoring diverse and complex ecosystems which will require only a minimal amount of maintenance or input of scarce resources. An intensive study site southeast of the Oil Shale Tract C-a has been obtained through a Cooperative Agreement with the Bureau of Land Management. Following this agreement, most subprojects were initiated at the intensive site. Additional programs will be implemented as spent shale becomes available this summer. Studies conducted principally in the laboratory and greenhouse, such as the microbiological and plant genetic studies, have achieved significant results.
Date: February 1, 1977
Creator: Sims, P. L.
System: The UNT Digital Library
Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Annual subcontract report, 1 April 1992--31 March 1993 (open access)

Role of polycrystallinity in CdTe and CuInSe{sub 2} photovoltaic cells. Annual subcontract report, 1 April 1992--31 March 1993

This report describes work to conduct several investigations of thin-film polycrystalline solar cells. (1) An analysis of high-efficiency solar cells fabricated at the University of South Florida showed significant reduction in forward recombination current, and the cells were stable over a 3-month test period. (2) Transient voltage effects were documented in a large number of polycrystalline cells and were attributed to long-lived trapping states sensitive to voltage changes near one-half open-circuit voltage. (3) Collection efficiency and its voltage dependence were carefully calculated. The typical effect on photocurrent at operating voltages is about 2% for CuInSe{sub 2}, and less for other cells.
Date: February 1, 1994
Creator: Sites, J. R.
System: The UNT Digital Library
Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Durango, Colorado (open access)

Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Durango, Colorado

This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.
Date: February 1995
Creator: unknown
System: The UNT Digital Library
Environmental Assessment of Remedial Action at the Naturita Uranium Processing Site Near Naturita, Colorado. Revision 3 (open access)

Environmental Assessment of Remedial Action at the Naturita Uranium Processing Site Near Naturita, Colorado. Revision 3

The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup …
Date: February 1, 1994
Creator: unknown
System: The UNT Digital Library