Efficiencies and Optimization of Weak Base Anion Ion-Exchange Resin for Groundwater Hexavalent Chromium Removal at Hanford - 14202 (open access)

Efficiencies and Optimization of Weak Base Anion Ion-Exchange Resin for Groundwater Hexavalent Chromium Removal at Hanford - 14202

The U.S. Department of Energy’s (DOE’s) contractor, CH2M HILL Plateau Remediation Company, has successfully converted a series of groundwater treatment facilities to use a new treatment resin that is delivering more than $3 million in annual cost savings and efficiency in treating groundwater contamination at the DOE Hanford Site in southeastern Washington State. During the production era, the nuclear reactors at the Hanford Site required a continuous supply of high-quality cooling water during operations. Cooling water consumption ranged from about 151,417 to 378,541 L/min (40,000 to 100,000 gal/min) per reactor, depending on specific operating conditions. Water from the Columbia River was filtered and treated chemically prior to use as cooling water, including the addition of sodium dichromate as a corrosion inhibitor. Hexavalent chromium was the primary component of the sodium dichromate and was introduced into the groundwater at the Hanford Site as a result of planned and unplanned discharges from the reactors starting in 1944. Groundwater contamination by hexavalent chromium and other contaminants related to nuclear reactor operations resulted in the need for groundwater remedial actions within the Hanford Site reactor areas. Beginning in 1995, groundwater treatment methods were evaluated, leading to the use of pumpand- treat facilities with ion …
Date: February 3, 2014
Creator: Nesham, Dean O.; Ivarson, Kristine A.; Hanson, James P.; Miller, Charles W.; Meyers, P. & Jaschke, Naomi M.
Object Type: Article
System: The UNT Digital Library
Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community (open access)

Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community

In 2011 the Inter-Tribal Council of Michigan, Inc. was awarded an Energy Efficiency Development and Deployment in Indian Country grant from the U.S. Department of Energy’s Tribal Energy Program. This grant aimed to study select Bay Mills Indian Community community/government buildings to determine what is required to reduce each building’s energy consumption by 30%. The Bay Mills Indian Community (BMIC) buildings with the largest expected energy use were selected for this study and included the Bay Mills Ellen Marshall Health Center building, Bay Mills Indian Community Administration Building, Bay Mills Community College main campus, Bay Mills Charter School and the Waishkey Community Center buildings. These five sites are the largest energy consuming Community buildings and comprised the study area of this project titled “Energy Efficiency Feasibility Study and Resulting Plan for the Bay Mills Indian Community”. The end objective of this study, plan and the Tribe is to reduce the energy consumption at the Community’s most energy intensive buildings that will, in turn, reduce emissions at the source of energy production, reduce energy expenditures, create long lasting energy conscious practices and positively affect the quality of the natural environment. This project’s feasibility study and resulting plan is intended to act …
Date: February 3, 2014
Creator: Kushman, Chris
Object Type: Report
System: The UNT Digital Library
2014 Chemical Reactions at Surfaces Gordon Research Conference and Gordon Research Seminar (April 28-May 3, 2013 - Les Diablerets Conference Center, Les Diablerets, Switzerland) (open access)

2014 Chemical Reactions at Surfaces Gordon Research Conference and Gordon Research Seminar (April 28-May 3, 2013 - Les Diablerets Conference Center, Les Diablerets, Switzerland)

presentations on chemistry at solid and liquid surfaces of relevance to catalysis, synthesis, photochemistry, environmental science, and tribology. Topics include: Fundamental Surface Chemistry; Catalysis; Solid Liquid and Aerosol Interfaces; Surface Photochemistry; Synthesis of Surfaces; Environmental Interfaces; Hot Topics in Surface Chemical Reactions; Tribology; Gas-Surface Scattering and Reactions; Novel Materials and Environments.
Date: February 3, 2013
Creator: Stair, Peter C.
Object Type: Article
System: The UNT Digital Library
Experimentally characterizing the electronic structures of f-electron systems using advanced high resolution Fourier transform microwave spectroscopies (open access)

Experimentally characterizing the electronic structures of f-electron systems using advanced high resolution Fourier transform microwave spectroscopies

We aim to (i) provide data that directly addresses the fundamental roles of actinide valence electrons in chemical bonding, and (ii) serve to provide prototypical data for the heavy element computational chemistry community. These goals will be achieved through the first pure rotational spectroscopic measurements on prototypical systems at ultra-high resolution. These systems encompass low oxidation state uranium and thorium compounds including, but not limited to, UX and ThX, X = F, Cl, Br, I, and UY and ThY, Y = O, S, and other simple U and Th-containing compounds. Our primary experimental tools involve time-domain rotational spectroscopy achieving line widths and resolutions of a few kHz.
Date: February 3, 2013
Creator: Cooke, Stephen A.
Object Type: Report
System: The UNT Digital Library
Proposal to Participate in J-Parc KL Experiment (open access)

Proposal to Participate in J-Parc KL Experiment

During the previous grant period we have been working on the J-PARC KL E14 (KOTO) experiment with the goal to discover and measure the rate of the rare decay neutral kaons to a pion and two neutrinos. This CP-violating flavor changing neutral current decay proceeds through second-order weak interactions. Other, as yet undiscovered particles, which can mediate the decay could provide an enhancement to the branching ratio, which in the Standard Model predicted to be about 2.80E-11. The experiment is expected to observe 100 events at the Standard Model branching ratio for a 10% measurement. The experiment is a follow-up to E391a at KEK and has been approved as experiment E14 at J-PARC. The main barrel vacuum vessel, the charged veto detectors, and the main barrel photon veto system will be reused from E391a. The main calorimeter has been replaced with Cesium Iodide crystals that are both smaller to provide improved shower reconstruction and longer to prevent energy leakage out of the back of the calorimeter. New trigger and data acquisitions electronics will be used.
Date: February 3, 2013
Creator: Campbell, Myron & Tecchio, Monica
Object Type: Report
System: The UNT Digital Library
2012 MOLECULAR AND IONIC CLUSTERS GORDON RESEARCH CONFERENCE, JANUARY 29 - FEBRUARY 3, 2012 (open access)

2012 MOLECULAR AND IONIC CLUSTERS GORDON RESEARCH CONFERENCE, JANUARY 29 - FEBRUARY 3, 2012

The Gordon Research Conference on 'Molecular and Ionic Clusters' focuses on clusters, which are the initial molecular species found in gases when condensation begins to occur. Condensation can take place solely from molecules interacting with each other, mostly at low temperatures, or when molecules condense around charged particles (electrons, protons, metal cations, molecular ions), producing ion molecule clusters. These clusters provide models for solvation, allow a pristine look at geometric as well as electronic structures of molecular complexes or matter in general, their interaction with radiation, their reactivity, their thermodynamic properties and, in particular, the related dynamics. This conference focuses on new ways to make clusters composed of different kinds of molecules, new experimental techniques to investigate the properties of the clusters and new theoretical methods with which to calculate the structures, dynamical motions and energetics of the clusters. Some of the main experimental methods employed include molecular beams, mass spectrometry, laser spectroscopy (from infrared to XUV; in the frequency as well as the time domain) and photoelectron spectroscopy. Techniques include laser absorption spectroscopy, laser induced fluorescence, resonance enhanced photoionization, mass-selected photodissociation, photofragment imaging, ZEKE photoelectron spectroscopy, etc. From the theoretical side, this conference highlights work on potential surfaces and …
Date: February 3, 2012
Creator: McCoy, Anne
Object Type: Article
System: The UNT Digital Library
Building an Efficient Model for Afterburn Energy Release (open access)

Building an Efficient Model for Afterburn Energy Release

Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of …
Date: February 3, 2012
Creator: Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L & Glascoe, L
Object Type: Article
System: The UNT Digital Library
Final Scientifc Report - Hydrogen Education State Partnership Project (open access)

Final Scientifc Report - Hydrogen Education State Partnership Project

Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective …
Date: February 3, 2012
Creator: Leon, Warren
Object Type: Text
System: The UNT Digital Library
LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY (open access)

LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate. Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. …
Date: February 3, 2012
Creator: Nash, C.
Object Type: Report
System: The UNT Digital Library
Resilience: Theory and Application. (open access)

Resilience: Theory and Application.

There is strong agreement among policymakers, practitioners, and academic researchers that the concept of resilience must play a major role in assessing the extent to which various entities - critical infrastructure owners and operators, communities, regions, and the Nation - are prepared to respond to and recover from the full range of threats they face. Despite this agreement, consensus regarding important issues, such as how resilience should be defined, assessed, and measured, is lacking. The analysis presented here is part of a broader research effort to develop and implement assessments of resilience at the asset/facility and community/regional levels. The literature contains various definitions of resilience. Some studies have defined resilience as the ability of an entity to recover, or 'bounce back,' from the adverse effects of a natural or manmade threat. Such a definition assumes that actions taken prior to the occurrence of an adverse event - actions typically associated with resistance and anticipation - are not properly included as determinants of resilience. Other analyses, in contrast, include one or more of these actions in their definitions. To accommodate these different definitions, we recognize a subset of resistance- and anticipation-related actions that are taken based on the assumption that an …
Date: February 3, 2012
Creator: Carlson, J. L.; Haffenden, R. A.; Bassett, G. W.; Buehring, W. A.; Collins, M. J., III; Folga, S. M. et al.
Object Type: Report
System: The UNT Digital Library
Analysis of Axial Growth of Gold Indide by Indium Diffusing away from Solder Mounds and Creating the Gold to Gold-Indide Interface Angle Inside the Solder Mounds (open access)

Analysis of Axial Growth of Gold Indide by Indium Diffusing away from Solder Mounds and Creating the Gold to Gold-Indide Interface Angle Inside the Solder Mounds

None
Date: February 3, 2011
Creator: Siekhaus, W J & Hrousis, C A
Object Type: Report
System: The UNT Digital Library
Integrated Multiscale Modeling of Molecular Computing Devices (open access)

Integrated Multiscale Modeling of Molecular Computing Devices

Nanoscience has been one of the major research focuses of the U.S. and much of the world for the past decade, in part because of its promise to revolutionize many fields, including materials, medicine, and electronics. At the heart of this promise is the fact that nanostructured materials can behave radically differently than their macroscopic counterparts (e.g., bulk gold is such an inert metal that it has found applications in such diverse fields as jewelry, biomedical implants and dentistry, whereas gold nanoparticles are highly reactive and are thus useful as nanocatalysts) and have properties that are tunable due to a strong dependence on the size and surface area of the nanostructure. Thus, nanoscience offers a remarkable opportunity to develop new functional systems built around nanostructured materials with unusual and tunable properties and functionality. The transition from nanoscience to nanotechnology becomes possible when nanostructured systems can be made reproducibly by processes that can be implemented on a large scale. The microelectronics industry is one example of an industry that has evolved into the realm of nanotechnology, since the exponential reduction in feature size in computer chips has resulted in feature sizes now under 50nm (45nm in production, 32nm demonstrated; feature size …
Date: February 3, 2011
Creator: Bernholc, Jerzy
Object Type: Report
System: The UNT Digital Library
Lensless x-ray imaging in reflection geometry (open access)

Lensless x-ray imaging in reflection geometry

Lensless X-ray imaging techniques such as coherent diffraction imaging and ptychography, and Fourier transform holography can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.
Date: February 3, 2011
Creator: Roy, S.; Parks, D. H.; Seu, K. A.; Turner, J. J.; Chao, W.; Anderson, E. H. et al.
Object Type: Article
System: The UNT Digital Library
Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials (open access)

Development of Regenerable High Capacity Boron Nitrogen Hydrides as Hydrogen Storage Materials

The objective of this three-phase project is to develop synthesis and hydrogen extraction processes for nitrogen/boron hydride compounds that will permit exploitation of the high hydrogen content of these materials. The primary compound of interest in this project is ammonia-borane (NH{sub 3}BH{sub 3}), a white solid, stable at ambient conditions, containing 19.6% of its weight as hydrogen. With a low-pressure on-board storage and an efficient heating system to release hydrogen, ammonia-borane has a potential to meet DOE's year 2015 specific energy and energy density targets. If the ammonia-borane synthesis process could use the ammonia-borane decomposition products as the starting raw material, an efficient recycle loop could be set up for converting the decomposition products back into the starting boron-nitrogen hydride. This project is addressing two key challenges facing the exploitation of the boron/nitrogen hydrides (ammonia-borane), as hydrogen storage material: (1) Development of a simple, efficient, and controllable system for extracting most of the available hydrogen, realizing the high hydrogen density on a system weight/volume basis, and (2) Development of a large-capacity, inexpensive, ammonia-borane regeneration process starting from its decomposition products (BNHx) for recycle. During Phase I of the program both catalytic and non-catalytic decomposition of ammonia borane are being investigated …
Date: February 3, 2010
Creator: Damle, A.
Object Type: Report
System: The UNT Digital Library
Investigation of Electron Bernstein Wave (EBW) Coupling and its Critical Dependence on EBW Collisional Loss in High-β, H-mode ST Plasmas (open access)

Investigation of Electron Bernstein Wave (EBW) Coupling and its Critical Dependence on EBW Collisional Loss in High-β, H-mode ST Plasmas

High-β spherical tokamak (ST) plasma conditions cut off propagation of electron cyclotron (EC) waves used for heating and current drive in conventional aspect ratio tokamaks. The electron Bernstein wave (EBW) has no density cutoff and is strongly absorbed and emitted at the EC harmonics, allowing EBWs to be used for heating and current drive in STs. However, this application requires efficient EBW coupling in the high-β, H-mode ST plasma regime. EBW emission (EBE) diagnostics and modelling have been employed on the National Spherical Torus Experiment (NSTX) to study oblique EBW to O-mode (B–X–O) coupling and propagation in H-mode plasmas. Efficient EBW coupling was measured before the L–H transition, but rapidly decayed thereafter. EBE simulations show that EBW collisional damping prior to mode conversion (MC) in the plasma scrape off reduces the coupling efficiency during the H-mode phase when the electron temperature is less than 30 eV inside the MC layer. Lithium evaporation during H-mode plasmas was successfully used to reduce this EBW collisional damping by reducing the electron density and increase the electron temperature in the plasma scrape off. Lithium conditioning increased the measured B–X–O coupling efficiency from less than 10% to 60%, consistent with EBE simulations.
Date: February 3, 2010
Creator: Diem, S. J.; Caughman, J. B.; Efthimion, P. C.; Kugel, H.; LeBlanc, B. P.; Phillips, C. K. et al.
Object Type: Article
System: The UNT Digital Library
LX-17 and ufTATB Data for Corner-Turning, Failure and Detonation (open access)

LX-17 and ufTATB Data for Corner-Turning, Failure and Detonation

Data is presented for the size (diameter) effect for ambient and cold confined LX-17, unconfined ambient LX-17, and confined ambient ultrafine TATB. Ambient, cold and hot double cylinder corner-turning data for LX-17, PBX 9502 and ufTATB is presented. Transverse air gap crossing in ambient LX-17 is studied with time delays given for detonations that cross.
Date: February 3, 2010
Creator: Souers, P C; Lauderbach, L; Garza, R; Vitello, P & Hare, D E
Object Type: Article
System: The UNT Digital Library
Measurements of Beam Ion Loss from the Compact Helical System (open access)

Measurements of Beam Ion Loss from the Compact Helical System

Beam ion loss from the Compact Helical System (CHS) has been measured with a scintillator-type probe. The total loss to the probe, and the pitch angle and gyroradius distributions of that loss, have been measured as various plasma parameters were scanned. Three classes of beam ion loss were observed at the probe position: passing ions with pitch angles within 10o of those of transition orbits, ions on transition orbits, and ions on trapped orbits, typically 15o or more from transition orbits. Some orbit calculations in this geometry have been performed in order to understand the characteristics of the loss. Simulation of the detector signal based upon the following of orbits from realistic beam deposition profiles is not able to reproduce the pitch angle distribution of the losses measured. Consequently it is inferred that internal plasma processes, whether magnetohydrodynamic modes, radial electric fields, or plasma turbulence, move previously confined beam ions to transition orbits, resulting in their loss.
Date: February 3, 2010
Creator: D. S. Darrow, M. Isobe, Takashi Kondo, M. Sasao, and the CHS Group National Institute for Fusion Science, Toki, Gifu, Japan
Object Type: Report
System: The UNT Digital Library
Micrometeorite Impacts in Beringian Mammoth Tusks and a Bison Skull (open access)

Micrometeorite Impacts in Beringian Mammoth Tusks and a Bison Skull

We have discovered what appear to be micrometeorites imbedded in seven late Pleistocene Alaskan mammoth tusks and a Siberian bison skull. The micrometeorites apparently shattered on impact leaving 2 to 5 mm hemispherical debris patterns surrounded by carbonized rings. Multiple impacts are observed on only one side of the tusks and skull consistent with the micrometeorites having come from a single direction. The impact sites are strongly magnetic indicating significant iron content. We analyzed several imbedded micrometeorite fragments from both tusks and skull with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and X-ray fluorescence (XRF). These analyses confirm the high iron content and indicate compositions highly enriched in nickel and depleted in titanium, unlike any natural terrestrial sources. In addition, electron microprobe (EMP) analyses of a Fe-Ni sulfide grain (tusk 2) show it contains between 3 and 20 weight percent Ni. Prompt gamma-ray activation analysis (PGAA) of a particle extracted from the bison skull indicates ~;;0.4 mg of iron, in agreement with a micrometeorite ~;;1 mm in diameter. In addition, scanning electron microscope (SEM) images and XRF analyses of the skull show possible entry channels containing Fe-rich material. The majority of tusks (5/7) have a calibrated weighted mean 14C …
Date: February 3, 2010
Creator: Hagstrum, Jonathon T.; Firestone, Richard B; West, Allen; Stefanka, Zsolt & Revay, Zsolt
Object Type: Article
System: The UNT Digital Library
RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES (open access)

RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.
Date: February 3, 2010
Creator: Maxwell, S.; Noyes, G. & Culligan, B.
Object Type: Article
System: The UNT Digital Library
Sensitivity Analysis of random two-body interactions (open access)

Sensitivity Analysis of random two-body interactions

None
Date: February 3, 2010
Creator: Johnson, C W & Krastev, P G
Object Type: Article
System: The UNT Digital Library
Streaming Compression of Hexahedral Meshes (open access)

Streaming Compression of Hexahedral Meshes

We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.
Date: February 3, 2010
Creator: Isenburg, M & Courbet, C
Object Type: Article
System: The UNT Digital Library
Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis (open access)

Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.
Date: February 3, 2009
Creator: Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha et al.
Object Type: Article
System: The UNT Digital Library