Illinois State Geological Survey Evaluation of CO2 Capture Options from Ethanol Plants (open access)

Illinois State Geological Survey Evaluation of CO2 Capture Options from Ethanol Plants

The Illinois State Geological Survey and the Midwest Geological Sequestration Consortium are conducting CO{sub 2} sequestration and enhanced oil recovery testing at six different sites in the Illinois Basin. The capital and operating costs for equipment to capture and liquefy CO{sub 2} from ethanol plants in the Illinois area were evaluated so that ethanol plants could be considered as an alternate source for CO{sub 2} in the event that successful enhanced oil recovery tests create the need for additional sources of CO{sub 2} in the area. Estimated equipment and operating costs needed to capture and liquefy 68 metric tonnes/day (75 tons/day) and 272 tonnes/day (300 tons/day) of CO{sub 2} for truck delivery from an ethanol plant are provided. Estimated costs are provided for food/beverage grade CO{sub 2} and also for less purified CO{sub 2} suitable for enhanced oil recovery or sequestration. The report includes preliminary plant and equipment designs and estimates major capital and operating costs for each of the recovery options. Availability of used equipment was assessed.
Date: September 30, 2006
Creator: Finley, Robert
System: The UNT Digital Library
Final report (open access)

Final report

High performance computational science and engineering simulations have become an increasingly important part of the scientist's problem solving toolset. A key reason is the development of widely used codes and libraries that support these applications, for example, Netlib, a collection of numerical libraries [33]. The term community codes refers to those libraries or applications that have achieved some critical level of acceptance by a user community. Many of these applications are on the high-end in terms of required resources: computation, storage, and communication. Recently, there has been considerable interest in putting such applications on-line and packaging them as network services to make them available to a wider user base. Applications such as data mining [22], theorem proving and logic [14], parallel numerical computation [8][32] are example services that are all going on-line. Transforming applications into services has been made possible by advances in packaging and interface technologies including component systems [2][6][13][28][37], proposed communication standards [34], and newer Web technologies such as Web Services [38]. Network services allow the user to focus on their application and obtain remote service when needed by simply invoking the service across the network. The user can be assured that the most recent version of the …
Date: April 30, 2006
Creator: Weissman, Jon B
System: The UNT Digital Library
Microstructure and Mechanics of Superconductor Epitaxy via the Chemical Solution Deposition Method (open access)

Microstructure and Mechanics of Superconductor Epitaxy via the Chemical Solution Deposition Method

Executive Summary: Initially the funds were sufficient funds were awarded to support one graduate student and one post-doc. Lange, though other funds, also supported a graduate intern from ETH Zurich, Switzerland for a period of 6 months. The initial direction was to study the chemical solution deposition method to understand the microstructural and mechanical phenomena that currently limit the production of thick film, reliable superconductor wires. The study was focused on producing thicker buffer layer(s) on Ni-alloy substrates produced by the RABiTS method. It focused on the development of the microstructure during epitaxy, and the mechanical phenomena that produce cracks during dip-coating, pyrolysis (decomposition of precursors during heating), crystallization and epitaxy. The initial direction of producing thicker layers of a know buffer layer material was redirected by co-workers at ORNL, in an attempt to epitaxially synthesize a potential buffer layer material, LaMnO3, via the solution route. After a more than a period of 6 months that showed that the LaMnO3 reacted with the Ni-W substrate at temperatures that could produce epitaxy, reviewers at the annual program review strongly recommended that the research was not yielding positive results. The only positive result presented at the meeting was that much thicker films …
Date: November 30, 2006
Creator: Lange, Frederick F.
System: The UNT Digital Library
Defect Prevention and Detection in Software for Automated Test Equipment (open access)

Defect Prevention and Detection in Software for Automated Test Equipment

Software for automated test equipment can be tedious and monotonous making it just as error-prone as other software. Active defect prevention and detection are also important for test applications. Incomplete or unclear requirements, a cryptic syntax used for some test applications—especially script-based test sets, variability in syntax or structure, and changing requirements are among the problems encountered in one tester. Such problems are common to all software but can be particularly problematic in test equipment software intended to test another product. Each of these issues increases the probability of error injection during test application development. This report describes a test application development tool designed to address these issues and others for a particular piece of test equipment. By addressing these problems in the development environment, the tool has powerful built-in defect prevention and detection capabilities. Regular expressions are widely used in the development tool as a means of formally defining test equipment requirements for the test application and verifying conformance to those requirements. A novel means of using regular expressions to perform range checking was developed. A reduction in rework and increased productivity are the results. These capabilities are described along with lessons learned and their applicability to other test …
Date: November 30, 2006
Creator: Bean, E.
System: The UNT Digital Library
Studies in Low-Energy Nuclear Science (open access)

Studies in Low-Energy Nuclear Science

This report presents a summary of research projects in the area of low energy nuclear reactions and structure, carried out between 1 January 2003 and 31 December 2005 and supported by U.S. DOE grant number DE-FG03-03NA00074. Cross sections measured with high resolution have been subjected to an Ericson theory analysis to infer information about the nuclear level density. Other measurements were made of the spectral shape of particles produced in evaporation processes; these also yield level density information. A major project was the development of a new Hauser-Feshbach code for analyzing such spectra. Other measurements produced information on the spectra of gamma rays emitted in reactions on heavy nuclei and gave a means of refining our understanding of gamma-ray strength functions. Finally,reactions on light nuclei were studied and subjected to an R-matrix analysis. Cross sections fora network of nuclear reactions proceedingthrough a given compound nucleus shouldgreatly constrain the family of allowed parameters. Modifications to the formalism andcomputer code are also discussed.
Date: March 30, 2006
Creator: Brune, Carl R. & Grimes, Steven M.
System: The UNT Digital Library
An Experimental Study of the Turbulent Development of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities (open access)

An Experimental Study of the Turbulent Development of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities

The objective of this three-year research program is to study the development of turbulence in Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. Incompressible RT and RM instabilities are studied in an apparatus in which a box containing two unequal density liquids is accelerated on a linear rail system either impulsively (by bouncing it off of a spring) to produce RM instability, or at a constant downward rate (using a weight and pulley system) to produce RT instability. These experiments are distinguished from others in the field in that they are initialized with well defined, measurable initial perturbations and are well visualized utilizing planar laser induced fluorescence imaging. New experiments are proposed aimed at generating fully turbulent RM and RT instabilities and quantifying the turbulent development once fully turbulent flows are achieved. The proposed experiments focus on the development and the subsequent application of techniques to accelerate the production of fully turbulent instabilities and the quantification of the turbulent instabilities once they are achieved. The proposed tasks include: the development of RM and RT experiments utilizing fluid combinations having larger density ratios than those previously used; the development of RM experiments with larger acceleration impulse than that previously used; and the investigation …
Date: October 30, 2006
Creator: Jacobs, Jeffrey, W.
System: The UNT Digital Library