Resource Type

CARBOXYLATIONS AND DECARBOXYLATIONS (open access)

CARBOXYLATIONS AND DECARBOXYLATIONS

A brief survey of decarboxylation reactions and carboxylation reactions that are known or presumed in biological systems will be presented. While a considerable number of amino acid decarboxylations are known, their mechanisms will not be included in the present discussion but will be reserved for a later paper in the symposium. The remaining decarboxylation reactions may be subdivided into oxidative and nonoxidative decarboxylations. In most cases, these reactions are practically irreversible except when coupled with suitable energy-yielding systems. The carboxylation reactions which are useful in the formation of carbon-carbon bonds in biological systems seem to fall into two or three groups: those which exhibit an apparent ATP requirement, and those which exhibit a reduced pyridine nucleotide requirement, and those which exhibit no apparent ATP requirement. Of the first group at least four cases, and possibly six or seven, are known, and one interpretation of them involves the preliminary formation of 'active' carbon dioxide, generally in the form of a carbonic acid-phosphoric acid anhydride. Those exhibiting no apparent ATP requirement seem to be susceptible to classifications as enol carboxylations in which the energy level of the substrate compound is high, rather than that of the carbon dioxide. There appear to be …
Date: April 21, 1959
Creator: Calvin, Melvin & Pon, Ning G.
System: The UNT Digital Library
The Effect of Localized Flow on Fracture of Reactor Components (open access)

The Effect of Localized Flow on Fracture of Reactor Components

Finite Element Analysis of Plastic Deformation and Fracture in Reactor Components
Date: December 21, 2008
Creator: Kumar, Arvind S.
System: The UNT Digital Library
Summary of operations and performance of the Utica aquifer and North Lake Basin wetlands restoration project in December 2005-November 2006. (open access)

Summary of operations and performance of the Utica aquifer and North Lake Basin wetlands restoration project in December 2005-November 2006.

This document summarizes the performance of the groundwater restoration systems installed by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) at the former CCC/USDA grain storage facility in Utica, Nebraska, during the second year of system operation, from December 1, 2005, until November 31, 2006. In the project at Utica, the CCC/USDA is cooperating with multiple state and federal agencies to remove carbon tetrachloride contamination from a shallow aquifer underlying the town and to provide supplemental treated groundwater for use in the restoration of a nearby wetlands area. Argonne National Laboratory has assisted the CCC/USDA by providing technical oversight for the aquifer restoration effort and facilities during this review period. This document presents overviews of the aquifer restoration facilities (Section 2) and system operations (Section 3), then describes groundwater production results (Section 4), groundwater treatment results (Section 5), and associated groundwater monitoring, system modifications, and costs during the review period (Section 6). Section 7 summarizes the present year of operation.
Date: December 21, 2006
Creator: LaFreniere, L. M.
System: The UNT Digital Library
Predications and Observations of Global Beta-induced Alfven-acoustic Modes in JET and NSTX (open access)

Predications and Observations of Global Beta-induced Alfven-acoustic Modes in JET and NSTX

In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high beta >20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks.
Date: October 21, 2008
Creator: N.N. Gorelenkov, et. al.
System: The UNT Digital Library
Improving Energy Efficiency Via Optimized Charge Motion and Slurry Flow in Plant Scale Sag Mills (open access)

Improving Energy Efficiency Via Optimized Charge Motion and Slurry Flow in Plant Scale Sag Mills

A research team from the University of Utah is working to make inroads into saving energy in these SAG mills. In 2003, Industries of the Future Program of the Department of Energy tasked the University of Utah team to build a partnership between the University and the mining industry for the specific purpose of reducing energy consumption in SAG mills. A partnership was formed with Cortez Gold Mines, Outokumpu Technology, Kennecott Utah Copper Corporation, and Process Engineering Resources Inc. At Cortez Gold Operations the shell and pulp lifters of the semiautogenous grinding mill was redesigned. The redesigned shell lifter has been in operation for over three years and the redesigned pulp lifter has been in operation for over nine months now. This report summarizes the dramatic reductions in energy consumption. Even though the energy reductions are very large, it is safe to say that a 20% minimum reduction would be achieved in any future installations of this technology.
Date: July 21, 2006
Creator: Rajamani, Raj K.
System: The UNT Digital Library
Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments. (open access)

Crack growth rates and fracture toughness of irradiated austenitic stainless steels in BWR environments.

In light water reactors, austenitic stainless steels (SSs) are used extensively as structural alloys in reactor core internal components because of their high strength, ductility, and fracture toughness. However, exposure to high levels of neutron irradiation for extended periods degrades the fracture properties of these steels by changing the material microstructure (e.g., radiation hardening) and microchemistry (e.g., radiation-induced segregation). Experimental data are presented on the fracture toughness and crack growth rates (CGRs) of wrought and cast austenitic SSs, including weld heat-affected-zone materials, that were irradiated to fluence levels as high as {approx} 2x 10{sup 21} n/cm{sup 2} (E > 1 MeV) ({approx} 3 dpa) in a light water reactor at 288-300 C. The results are compared with the data available in the literature. The effects of material composition, irradiation dose, and water chemistry on CGRs under cyclic and stress corrosion cracking conditions were determined. A superposition model was used to represent the cyclic CGRs of austenitic SSs. The effects of neutron irradiation on the fracture toughness of these steels, as well as the effects of material and irradiation conditions and test temperature, have been evaluated. A fracture toughness trend curve that bounds the existing data has been defined. The synergistic …
Date: January 21, 2008
Creator: Chopra, O. K. & Shack, W. J.
System: The UNT Digital Library
A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost (open access)

A Novel Approach to Mineral Carbonation: Enhancing Carbonation While Avoiding Mineral Pretreatment Process Cost

Known fossil fuel reserves, especially coal, can support global energy demands for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Unlike other CO{sub 2} sequestration candidate technologies that propose long-term storage, mineral sequestration provides permanent disposal by forming geologically stable mineral carbonates. Carbonation of the widely occurring mineral olivine (e.g., forsterite, Mg{sub 2}SiO{sub 4}) is a large-scale sequestration process candidate for regional implementation, which converts CO{sub 2} into the environmentally benign mineral magnesite (MgCO{sub 3}). The primary goal is cost-competitive process development. As the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is key to economic viability. Recent studies at the U.S. DOE Albany Research Center have established that aqueous-solution carbonation using supercritical CO{sub 2} is a promising process; even without olivine activation, 30-50% carbonation has been achieved in an hour. Mechanical activation (e.g., attrition) has accelerated the carbonation process to an industrial timescale (i.e., near completion in less than an hour), at reduced pressure and temperature. However, the activation cost is too high to be economical and lower cost pretreatment options are needed. We have discovered that robust silica-rich passivating layers form on the olivine surface during carbonation. As …
Date: June 21, 2007
Creator: Chizmeshya, Andrew V. G.; McKelvy, Michael J.; Squires, Kyle; Carpenter, Ray W. & Bearat, Hamdallah
System: The UNT Digital Library
DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review (open access)

DOE-DARPA High-Performance Corrosion-Resistant Materials (HPCRM), Annual HPCRM Team Meeting & Technical Review

The overall goal is to develop high-performance corrosion-resistant iron-based amorphous-metal coatings for prolonged trouble-free use in very aggressive environments: seawater & hot geothermal brines. The specific technical objectives are: (1) Synthesize Fe-based amorphous-metal coating with corrosion resistance comparable/superior to Ni-based Alloy C-22; (2) Establish processing parameter windows for applying and controlling coating attributes (porosity, density, bonding); (3) Assess possible cost savings through substitution of Fe-based material for more expensive Ni-based Alloy C-22; (4) Demonstrate practical fabrication processes; (5) Produce quality materials and data with complete traceability for nuclear applications; and (6) Develop, validate and calibrate computational models to enable life prediction and process design.
Date: September 21, 2007
Creator: Farmer, J; Brown, B; Bayles, B; Lemieux, T; Choi, J; Ajdelsztajn, L et al.
System: The UNT Digital Library
Earth Sciences Division Research Summaries 2006-2007 (open access)

Earth Sciences Division Research Summaries 2006-2007

Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the …
Date: July 21, 2008
Creator: DePaolo, Donald & DePaolo, Donald
System: The UNT Digital Library
LLNL Summer 2007 Internship Experience (open access)

LLNL Summer 2007 Internship Experience

Since the 2001 anthrax attacks involving the US postal service, there have been increased efforts to study more advanced methods of decontamination and detection of viable Bacillus anthracis before and after decontamination efforts. Current methods for sample processing and viability analysis are low throughput ({approx}30-40 per day) requiring several manual steps, with confirmed results obtained days later. The group I am working with has developed more rapid, high throughput methods using automation to process surface samples combined with a time-course real-time Polymerase Chain Reaction (PCR) approach to determine the presence of viable B. anthracis spores. This process is referred to as Rapid Viability (RV)-PCR. These methods based on an observable change in PCR response during culturing showed detection of low numbers of bacterial pathogens in hours compared to days required for conventional culture analysis. In this project, we are studying detection limits, growth inhibition and PCR inhibition of a modified real-time PCR-based automated method of detecting B. anthracis Sterne (non-infectious variant) in various environmental samples containing levels of background debris expected during sampling. In order to decrease the detection limit, additional clean-up steps are employed. Since B. anthracis spores are very resilient to solvents, ethanol treatment can also be used …
Date: August 21, 2007
Creator: New, A A
System: The UNT Digital Library
Effective Error Bounds in Euler-Maclaurin-Based QuadratureSchemes (open access)

Effective Error Bounds in Euler-Maclaurin-Based QuadratureSchemes

We analyze the behavior of Euler-Maclaurin-basedintegrationschemes with the intention of deriving accurate andeconomicestimations of the error term.
Date: June 21, 2005
Creator: Bailey, David H. & Borwein, Jonathan M.
System: The UNT Digital Library
Science-Driven Network Requirements for ESnet (open access)

Science-Driven Network Requirements for ESnet

The Energy Sciences Network (ESnet) is the primary providerof network connectivity for the US Department of Energy Office ofScience, the single largest supporter of basic research in the physicalsciences in the United States. In support of the Office of Scienceprograms, ESnet regularly updates and refreshes its understanding of thenetworking requirements of the instruments, facilities and scientiststhat it serves. This focus has helped ESnet to be a highly successfulenabler of scientific discovery for over 20 years. In August, 2002 theDOE Office of Science organized a workshop to characterize the networkingrequirements for Office of Science programs. Networking and middlewarerequirements were solicited from a representative group of scienceprograms. The workshop was summarized in two documents the workshop finalreport and a set of appendixes. This document updates the networkingrequirements for ESnet as put forward by the science programs listed inthe 2002 workshop report. In addition, three new programs have beenadded. Theinformation was gathered through interviews with knowledgeablescientists in each particular program or field.
Date: February 21, 2006
Creator: Adams, Paul; Canon, Shane; Carter, Steven; Draney, Brent; Greenwald, Martin; Hodges, Jason et al.
System: The UNT Digital Library
Remaining Sites Verification Package for the 1607-B2 Septic System and 100-B-14:2 Sanitary Sewer System, Waste Site Reclassification Form 2004-006 (open access)

Remaining Sites Verification Package for the 1607-B2 Septic System and 100-B-14:2 Sanitary Sewer System, Waste Site Reclassification Form 2004-006

The 100-B-14:2 subsite encompasses the former sanitary sewer feeder lines associated with the 1607-B2 and 1607-B7 septic systems. Feeder lines associated with the 185/190-B building have also been identified as the 100-B-14:8 subsite, and feeder lines associated with the 1607-B7 septic system have also been identified as the 100-B-14:9 subsite. These two subsites have been administratively cancelled to resolve the redundancy. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.
Date: March 21, 2007
Creator: Dittmer, L. M.
System: The UNT Digital Library
Nerva Fuel Element Development Program Summary Report - July 1966 through June 1972 Extrusion Studies (open access)

Nerva Fuel Element Development Program Summary Report - July 1966 through June 1972 Extrusion Studies

This part of the completion report pertaining to the NERVA graphite fuel element program covers data collected during the extrusion studies. The physical properties of the fuel element reached the following values: coefficient of thermal expansion (CTE) - 7.0 x 10-6/o C (25 - l,OOOo C); modulus of elasticity - 1.5 x lo6 psi; flexural strength - - 8,000 psi; ultimate strain to failure - 5,500 pidin; good thermal stress resistance. Matrices were produced which could be vapor coated with crack-free films of zirconium carbide. The CTE of the matrix was almost equal to the CTE of the zirconium carbide coating.
Date: September 21, 1973
Creator: Napier, J. M.
System: The UNT Digital Library
Isotopic Survey of Lake Davis and the Local Groundwater (open access)

Isotopic Survey of Lake Davis and the Local Groundwater

In September 2007, California Fish and Game (CAFG) plans to eradicate the northern pike from Lake Davis. As a result of the eradication treatment, local residents have concerns that the treatment might impact the local groundwater quality. To address the concerns of the residents, Lawrence Livermore National Laboratory (LLNL) recommended measuring the naturally occurring stable oxygen isotopes in local groundwater wells, Lake Davis, and the Lake Davis tributaries. The purpose of these measurements is to determine if the source of the local groundwater is either rain/snowmelt, Lake Davis/Big Grizzly Creek water or a mixture of Lake Davis/Big Grizzly Creek and rain/snowmelt. As a result of natural evaporation, Lake Davis and the water flowing into Big Grizzly Creek are naturally enriched in {sup 18}oxygen ({sup 18}O), and if a source of a well's water is Lake Davis or Big Grizzly Creek, the well water will contain a much higher concentration of {sup 18}O. This survey will allow for the identification of groundwater wells whose water source is Lake Davis or Big Grizzly Creek. The results of this survey will be useful in the development of a water-quality monitoring program for the upcoming Lake Davis treatment. LLNL analyzed 167 groundwater wells (Table …
Date: August 21, 2007
Creator: Ridley, M N; Moran, J E & Singleton, M J
System: The UNT Digital Library
Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities (open access)

Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the …
Date: March 21, 2008
Creator: Oldenburg, Curtis; Oldenburg, Curtis M. & Torn, Margaret S.
System: The UNT Digital Library
Cosmological Constant as a Manifestation of the Hierarchy (open access)

Cosmological Constant as a Manifestation of the Hierarchy

There has been the suggestion that the cosmological constant as implied by the dark energy is related to the well-known hierarchy between the Planck scale, M{sub PI}, and the Standard Model scale, M{sub SM}. Here we further propose that the same framework that addresses this hierarchy problem must also address the smallness problem of the cosmological constant. Specifically, we investigate the minimal supersymmetric (SUSY) extension of the Randall-Sundrum model where SUSY-breaking is induced on the TeV brane and transmitted into the bulk. We show that the Casimir energy density of the system indeed conforms with the observed dark energy scale.
Date: December 21, 2007
Creator: Chen, Pisin & Gu, Je-An
System: The UNT Digital Library
Remaining Sites Verification Package for the 128-B-2, 100-B Burn Pit #2 Waste Site, Waste Site Reclassification Form 2005-038 (open access)

Remaining Sites Verification Package for the 128-B-2, 100-B Burn Pit #2 Waste Site, Waste Site Reclassification Form 2005-038

The 128-B-2 waste site was a burn pit historically used for the disposal of combustible and noncombustible wastes, including paint and solvents, office waste, concrete debris, and metallic debris. This site has been remediated by removing approximately 5,627 bank cubic meters of debris, ash, and contaminated soil to the Environmental Restoration Disposal Facility. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.
Date: December 21, 2005
Creator: Carlson, R. A.
System: The UNT Digital Library
Computing Path Tables for Quickest Multipaths In Computer Networks (open access)

Computing Path Tables for Quickest Multipaths In Computer Networks

We consider the transmission of a message from a source node to a terminal node in a network with n nodes and m links where the message is divided into parts and each part is transmitted over a different path in a set of paths from the source node to the terminal node. Here each link is characterized by a bandwidth and delay. The set of paths together with their transmission rates used for the message is referred to as a multipath. We present two algorithms that produce a minimum-end-to-end message delay multipath path table that, for every message length, specifies a multipath that will achieve the minimum end-to-end delay. The algorithms also generate a function that maps the minimum end-to-end message delay to the message length. The time complexities of the algorithms are O(n{sup 2}((n{sup 2}/logn) + m)min(D{sub max}, C{sub max})) and O(nm(C{sub max} + nmin(D{sub max}, C{sub max}))) when the link delays and bandwidths are non-negative integers. Here D{sub max} and C{sub max} are respectively the maximum link delay and maximum link bandwidth and C{sub max} and D{sub max} are greater than zero.
Date: December 21, 2004
Creator: Grimmell, W.C.
System: The UNT Digital Library
Community Land Model Version 3.0 (CLM3.0) Developer's Guide (open access)

Community Land Model Version 3.0 (CLM3.0) Developer's Guide

This document describes the guidelines adopted for software development of the Community Land Model (CLM) and serves as a reference to the entire code base of the released version of the model. The version of the code described here is Version 3.0 which was released in the summer of 2004. This document, the Community Land Model Version 3.0 (CLM3.0) User's Guide (Vertenstein et al., 2004), the Technical Description of the Community Land Model (CLM) (Oleson et al., 2004), and the Community Land Model's Dynamic Global Vegetation Model (CLM-DGVM): Technical Description and User's Guide (Levis et al., 2004) provide the developer, user, or researcher with details of implementation, instructions for using the model, a scientific description of the model, and a scientific description of the Dynamic Global Vegetation Model integrated with CLM respectively. The CLM is a single column (snow-soil-vegetation) biogeophysical model of the land surface which can be run serially (on a laptop or personal computer) or in parallel (using distributed or shared memory processors or both) on both vector and scalar computer architectures. Written in Fortran 90, CLM can be run offline (i.e., run in isolation using stored atmospheric forcing data), coupled to an atmospheric model (e.g., the Community …
Date: December 21, 2004
Creator: Hoffman, FM
System: The UNT Digital Library
Inner-shell electron spectroscopy and chemical properties of atoms and small molecules (open access)

Inner-shell electron spectroscopy and chemical properties of atoms and small molecules

The program has been concerned with gas-phase carbon 1s photoelectron spectroscopy of a number of molecules of potential chemical interest. The primary goals have been to determine carbon 1s ionization energies with a view of relating these to other chemical properties such as electronegativity, acidity, basicity, and reactivity, in order to provide a better understanding of these fundamental properties. The role of electron-donating (methyl) and electron-withdrawing (fluoro) substituents on the carbon 1s ionization energies of substituted benzenes has been studied., and these results have been related to measurements of the reactivities of the same molecule as well as to their affinities for protons (basicity). Opportunities for investigation in unplanned areas have arisen, and the program has been modified to take advantage of these. One has been the realization that, under certain circumstances, inner-shell ionization energies may depend on the molecular conformation. Several examples of this phenomenon have been investigated and it has been shown that this technique provides a tool for the measurement of the energy differences between different conformers of the same substance. The other has been the demonstration that photoelectron recoil can lead to the excitation of vibrational modes that are forbidden in the normal view of photoemission …
Date: January 21, 2009
Creator: Thomas, T. Darrah
System: The UNT Digital Library
Preliminary Materials Selection Issues for the Next Generation Nuclear Plant Reactor Pressure Vessel. (open access)

Preliminary Materials Selection Issues for the Next Generation Nuclear Plant Reactor Pressure Vessel.

In the coming decades, the United States and the entire world will need energy supplies to meet the growing demands due to population increase and increase in consumption due to global industrialization. One of the reactor system concepts, the Very High Temperature Reactor (VHTR), with helium as the coolant, has been identified as uniquely suited for producing hydrogen without consumption of fossil fuels or the emission of greenhouse gases [Generation IV 2002]. The U.S. Department of Energy (DOE) has selected this system for the Next Generation Nuclear Plant (NGNP) Project, to demonstrate emissions-free nuclear-assisted electricity and hydrogen production within the next 15 years. The NGNP reference concepts are helium-cooled, graphite-moderated, thermal neutron spectrum reactors with a design goal outlet helium temperature of {approx}1000 C [MacDonald et al. 2004]. The reactor core could be either a prismatic graphite block type core or a pebble bed core. The use of molten salt coolant, especially for the transfer of heat to hydrogen production, is also being considered. The NGNP is expected to produce both electricity and hydrogen. The process heat for hydrogen production will be transferred to the hydrogen plant through an intermediate heat exchanger (IHX). The basic technology for the NGNP has …
Date: March 21, 2007
Creator: Natesan, K.; Majumdar, S.; Shankar, P. S. & Shah, V. N.
System: The UNT Digital Library
Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes (open access)

Performance Demonstration Program Plan for RCRA Constituent Analysis of Solidified Wastes

The Performance Demonstration Program (PDP) for Resource Conservation and Recovery Act (RCRA) constituents distributes test samples for analysis of volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and metals in solid matrices. Each distribution of test samples is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD; DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department. The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the RCRA PDP. Participating laboratories demonstrate acceptable performance by successfully analyzing single- blind performance evaluation samples (subsequently referred to as PDP samples) according to the criteria established in this plan. PDP samples are used as an independent means to assess laboratory performance regarding compliance with the WAP quality assurance objectives (QAOs). The concentrations of analytes in the PDP samples address levels of regulatory …
Date: September 21, 2006
Creator: Office, Carlsbad Field
System: The UNT Digital Library
Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility (open access)

Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, …
Date: August 21, 2007
Creator: Barrera, C. A. & Moran, M. J.
System: The UNT Digital Library