Exascale for Energy: The Role of Exascale Computing in Energy Security (open access)

Exascale for Energy: The Role of Exascale Computing in Energy Security

How will the United States satisfy energy demand in a tightening global energy marketplace while, at the same time, reducing greenhouse gas emissions? Exascale computing -- expected to be available within the next eight to ten years ? may play a crucial role in answering that question by enabling a paradigm shift from test-based to science-based design and engineering. Computational modeling of complete power generation systems and engines, based on scientific first principles, will accelerate the improvement of existing energy technologies and the development of new transformational technologies by pre-selecting the designs most likely to be successful for experimental validation, rather than relying on trial and error. The predictive understanding of complex engineered systems made possible by computational modeling will also reduce the construction and operations costs, optimize performance, and improve safety. Exascale computing will make possible fundamentally new approaches to quantifying the uncertainty of safety and performance engineering. This report discusses potential contributions of exa-scale modeling in four areas of energy production and distribution: nuclear power, combustion, the electrical grid, and renewable sources of energy, which include hydrogen fuel, bioenergy conversion, photovoltaic solar energy, and wind turbines. Examples of current research are taken from projects funded by the U.S. …
Date: July 15, 2010
Creator: Authors, Various
Object Type: Report
System: The UNT Digital Library
CesrTA Retarding Field Analyzer Measurements in Drifts, Dipoles, Quadrupoles and Wigglers (open access)

CesrTA Retarding Field Analyzer Measurements in Drifts, Dipoles, Quadrupoles and Wigglers

Over the course of the CesrTA program, the Cornell Electron Storage Ring (CESR) has been instrumented with several retarding field analyzers (RFAs), which measure the local density and energy distribution of the electron cloud. These RFAs have been installed in drifts, dipoles, quadrupoles, and wigglers; and data have been taken in a variety of beam conditions and bunch configurations. This paper will provide an overview of these results, and give a preliminary evaluation of the efficacy of cloud mitigation techniques implemented in the instrumented vacuum chambers.
Date: June 15, 2010
Creator: Calvey, J. R.; Li, Y.; Livezey, J. A.; Makita, J.; Meller, R. E.; Palmer, M. A. et al.
Object Type: Article
System: The UNT Digital Library
Experimental Studies on Grooved Surfaces to Suppress Secondary Electron Emission (open access)

Experimental Studies on Grooved Surfaces to Suppress Secondary Electron Emission

Grooved surfaces are effective to suppress the secondary electron emission, and can be a promising technique to mitigate the electron cloud effect in positron/proton storage rings. Aiming for the application in a dipole-type magnetic field, various shapes of triangular grooved surfaces have been studied at KEK. The grooves tested here have vertex angles of 20-30{sup o}, depths of 2.5-5.0 mm, and vertex roundness of 0.05-0.2 mm. In a laboratory, the secondary electron yields (SEY) of small test pieces were measured using an electron beam in a magnetic-free condition. The grooved surfaces clearly had low SEY compared to flat surfaces of the same materials. The grooves with sharper vertexes had smaller SEY. A test chamber installed in a wiggler magnet of the KEKB positron ring was used to investigate the efficacy of the grooved surface in a strong magnetic field. In the chamber, a remarkable reduction in the electron density around the beam orbit was observed compared to the case of a flat surface with TiN coating.
Date: June 15, 2010
Creator: Suetsugu, Y.; Fukuma, H.; Shibata, K.; Pivi, M. & Wang, L.
Object Type: Article
System: The UNT Digital Library
Beam Tests of a Clearing Electrode for Electron Cloud Mitigation at KEKB Positron Ring (open access)

Beam Tests of a Clearing Electrode for Electron Cloud Mitigation at KEKB Positron Ring

In order to mitigate the electron cloud instability in an intense positron ring, an electron clearing electrode with a very thin structure has been developed. The electrode was tested with a positron beam of the KEKB B-factory (KEKB). A drastic reduction in the electron density around the beam was demonstrated in a wiggler magnet with a dipole-type magnetic field of 0.78 T. The clearing electrode was then applied to a copper beam pipe with antechambers assuming an application of the electrode to a wiggler section in the Super KEKB. The beam pipe was installed at a magnetic-free region in the ring and tested with beam. No extra heating of the electrodes and feed-throughs were observed. A reduction in the electron density reasonable in a magnetic-free region was also obtained.
Date: June 15, 2010
Creator: Suetsugu, Y.; Fukuma, H.; Shibata, K.; Pivi, M. & Wang, L.
Object Type: Article
System: The UNT Digital Library
RADIATION LEVEL CHANGES AT RAM PACKAGE SURFACES (open access)

RADIATION LEVEL CHANGES AT RAM PACKAGE SURFACES

None
Date: September 15, 2010
Creator: Opperman, E.
Object Type: Article
System: The UNT Digital Library
Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products (open access)

Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. …
Date: March 15, 2010
Creator: Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K. et al.
Object Type: Article
System: The UNT Digital Library
Final Technical Report DOE/GO/13142-1 (open access)

Final Technical Report DOE/GO/13142-1

This research adds to the understanding of the areas of residual starch and biomass conversion to alcohol, by providing data from pilot plant equipment of larger scale than the minimum required to give commercially scalable data. Instrumentation and control is in place to capture the information produced, for economic and technical evaluation. The impact of rheology, recycle streams, and residence time distributions on the technical and economic performance can be assessed. Various processes can be compared technically and economically because the pilot plants are readily modifiable. Several technologies for residual starch yield improvement have been identified, implemented, and patent applications filed. Various biomass-to-ethanol processes have been compared and one selected for technical optimization and commercialization. The technical and economic feasibility of the current simplified biomass conversion process is being confirmed by intensive pilot plant efforts as of this writing. Optimization of the feedstock handling and pretreatment is occurring to increase the alcohol yield above the minimum commercially viable level already demonstrated. Samples of biomass residue and reactor blowdown condensate are being collected to determine the technical and economic performance of the high-water-recycle waste treatment system being considered for the process. The project is of benefit to the public because it …
Date: September 15, 2010
Creator: Mulvihill, Patrick & Nguyen, Quang
Object Type: Report
System: The UNT Digital Library
DROP TESTS RESULTS OF REVISED CLOSURE BOLT CONFIGURATION OF THE STANDARD WASTE BOX, STANDARD LARGE BOX 2, AND TEN DRUM OVERPACK PACKAGINGS (open access)

DROP TESTS RESULTS OF REVISED CLOSURE BOLT CONFIGURATION OF THE STANDARD WASTE BOX, STANDARD LARGE BOX 2, AND TEN DRUM OVERPACK PACKAGINGS

The Transuranic (TRU) Disposition Project at Savannah River Site will require numerous transfers of radioactive materials within the site boundaries for sorting and repackaging. The three DOT Type A shipping packagings planned for this work have numerous bolts for securing the lids to the body of the packagings. In an effort to reduce operator time to open and close the packages during onsite transfers, thus reducing personnel exposure and costs, an evaluation was performed to analyze the effects of reducing the number of bolts required to secure the lid to the packaging body. The evaluation showed the reduction to one-third of the original number of bolts had no effect on the packagings capability to sustain vibratory loads, shipping loads, internal pressure loads, and the loads resulting from a 4-ft drop. However, the loads caused by the 4-ft drop are difficult to estimate and the study recommended each of the packages be dropped to show the actual effects on the package closure. Even with reduced bolting, the packagings were still required to meet the 49 CFR 178.350 performance criteria for Type A packaging. This paper discusses the effects and results of the drop testing of the three packagings.
Date: April 15, 2010
Creator: May, C.; Opperman, E. & Mckeel, C.
Object Type: Article
System: The UNT Digital Library
Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror (open access)

Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror

At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry currently under development at the ALS.
Date: September 15, 2010
Creator: Yuan, Sheng Sam; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory et al.
Object Type: Article
System: The UNT Digital Library
Seismicity Characterization and Monitoring at WESTCARB's Proposed Montezuma Hills Geologic Sequestration Site (open access)

Seismicity Characterization and Monitoring at WESTCARB's Proposed Montezuma Hills Geologic Sequestration Site

The West Coast Regional Carbon Sequestration Partnership (WESTCARB), in collaboration with Shell Oil Co. performed site characterization for a potential small-scale pilot test of geologic sequestration of carbon dioxide (CO2). The site area, know as Montezuma Hills, is near the town of Rio Vista in northern California. During the process of injection at a CO2 storage site, there is a potential for seismic events due to slippage upon pre-existing discontinuities or due to creation of new fractures. Observations from many injection projects have shown that the energy from these events can be used for monitoring of processes in the reservoir. Typically, the events are of relatively high frequency and very low amplitude. However, there are also well documented (non-CO2-related) cases in which subsurface injection operations have resulted in ground motion felt by near-by communities. Because of the active tectonics in California (in particular the San Andreas Fault system), and the potential for public concern, WESTCARB developed and followed an induced seismicity protocol (Myer and Daley, 2010). This protocol called for assessing the natural seismicity in the area and deploying a monitoring array if necessary. In this report, we present the results of the natural seismicity assessment and the results of …
Date: September 15, 2010
Creator: Daley, T. M.; Haught, R.; Peterson, J. E.; Boyle, K.; Beyer, J. H. & Hutchings, L. R.
Object Type: Report
System: The UNT Digital Library
Design and Synthesis of Mixed Oxides Nanoparticles for Biofuel Applications (open access)

Design and Synthesis of Mixed Oxides Nanoparticles for Biofuel Applications

The work in this dissertation presents the synthesis of two mixed metal oxides for biofuel applications and NMR characterization of silica materials. In the chapter 2, high catalytic efficiency of calcium silicate is synthesized for transesterfication of soybean oil to biodisels. Chapter 3 describes the synthesis of a new Rh based catalyst on mesoporous manganese oxides. The new catalyst is found to have higher activity and selectivity towards ethanol. Chapter 4 demonstrates the applications of solid-state Si NMR in the silica materials.
Date: May 15, 2010
Creator: Chen, Senniang
Object Type: Thesis or Dissertation
System: The UNT Digital Library
A Superconducting transformer system for high current cable testing (open access)

A Superconducting transformer system for high current cable testing

This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer …
Date: February 15, 2010
Creator: Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G. et al.
Object Type: Article
System: The UNT Digital Library
Modeling laser wakefield accelerators in a Lorentz boosted frame (open access)

Modeling laser wakefield accelerators in a Lorentz boosted frame

Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching …
Date: September 15, 2010
Creator: Vay, J. L.; Geddes, C. G. R.; Cormier-Michel, E. & Grote, D. P.
Object Type: Report
System: The UNT Digital Library
Spectral induced polarization signatures of abiotic FeS precipitation (open access)

Spectral induced polarization signatures of abiotic FeS precipitation

In recent years, geophysical methods have been shown to be sensitive to microbial induced mineralization processes. The spectral induced polarization (SIP) method appears to be very promising for monitoring mineralization and microbial processes. With this work, we study the links of mineralization and SIP signals, in the absence of microbial activity. We recorded the SIP response during abiotic FeS precipitation. We show that the SIP signals are diagnostic of FeS mineralization and can be differentiated from SIP signals from bio-mineralization processes. More specifically the imaginary conductivity shows almost linear dependence on the amount of FeS precipitating out of solution, above the threshold value 0.006 gr under our experimental conditions. This research has direct implications for the use of the SIP method as a monitoring, and decision making, tool for sustainable remediation of metals in contaminated soils and groundwater.
Date: January 15, 2010
Creator: Ntarlagiannis, D.; Doherty, R. & Williams, K. H.
Object Type: Article
System: The UNT Digital Library
Black carbon aerosols and the third polar ice cap (open access)

Black carbon aerosols and the third polar ice cap

Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from …
Date: April 15, 2010
Creator: Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John & Orlikowski, Daniel
Object Type: Article
System: The UNT Digital Library
Merged Sounding VAP Version 2.0 (open access)

Merged Sounding VAP Version 2.0

The Merged Sounding Value-Added Product (VAP) has been in the ARM and ASR pipeline since 2001. Output data streams have been added to the Evaluation Products section of the ARM website for the past five years. Currently, there are data for all of the ACRF fixed sites and all deployments of the Mobile Facility. Fifty-three years of Merged Sounding data is available as an evaluation product. The process of moving all to the ARM Data Archive has been started and will be completed shortly. A second version of the Merged Sounding VAP was developed to address several concerns: (1) Vaisala radiosondes have inherent problems obtaining an accurate measurement of relative humidity, (2) the profile can be extended from 20 km to 60 km above ground level based upon the height achieved by ECMWF profiles, and (3) ECMWF temperatures require adjustments at high altitude (between 1mb and 100 mb). Solutions to these issues have been incorporated in the new version of this VAP. Along with producing that second version of Merged Sounding, a secondary data stream - Sonde Adjust - was created. This VAP incorporates any humidity corrections to the Vaisala RS-80, RS-90, and RS-92 radiosondes. The algorithms used to perform …
Date: March 15, 2010
Creator: Troyan, D.; Jensen, M.; Turner, D. & Miloshevich, L.
Object Type: Article
System: The UNT Digital Library
Non-isothermal flow in low permeable porous media: A comparison of Richards' and two-phase flow approaches (open access)

Non-isothermal flow in low permeable porous media: A comparison of Richards' and two-phase flow approaches

The present work compares the performance of two alternative flow models for the simulation of thermal-hydraulic coupled processes in low permeable porous media: non-isothermal Richards and two-phase flow concepts. Both models take vaporization processes into account: however, the Richards model neglects dynamic pressure variations and bulk flow of the gaseous phase. For the comparison of the two approaches first published data from a laboratory experiment is studied involving thermally driven moisture flow in a partially saturated bentonite sample. Then a benchmark test of longer-term thermal-hydraulic behavior in the engineered barrier system of a geological nuclear waste repository is analyzed (DECOVALEX project). It was found that both models can be used to reproduce the vaporization process if the intrinsic permeability is relative high. However, when a thermal-hydraulic coupled problem has the same low intrinsic permeability for both the liquid and the gas phase, only the two-phase flow approach provides reasonable results.
Date: March 15, 2010
Creator: Wang, W.; Rutqvist, J.; Gorke, U.-J.; Birkholzer, J.T. & Kolditz, O.
Object Type: Article
System: The UNT Digital Library
Single-well experimental design for studying residual trapping of superciritcal carbon dioxide (open access)

Single-well experimental design for studying residual trapping of superciritcal carbon dioxide

The objective of our research is to design a single-well injection-withdrawal test to evaluate residual phase trapping at potential CO{sub 2} geological storage sites. Given the significant depths targeted for CO{sub 2} storage and the resulting high costs associated with drilling to those depths, it is attractive to develop a single-well test that can provide data to assess reservoir properties and reduce uncertainties in the appraisal phase of site investigation. The main challenges in a single-well test design include (1) difficulty in quantifying the amount of CO{sub 2} that has dissolved into brine or migrated away from the borehole; (2) non-uniqueness and uncertainty in the estimate of the residual gas saturation (S{sub gr}) due to correlations among various parameters; and (3) the potential biased S{sub gr} estimate due to unaccounted heterogeneity of the geological medium. To address each of these challenges, we propose (1) to use a physical-based model to simulation test sequence and inverse modeling to analyze data information content and to quantify uncertainty; (2) to jointly use multiple data types generated from different kinds of tests to constrain the Sgr estimate; and (3) to reduce the sensitivity of the designed tests to geological heterogeneity by conducting the same …
Date: June 15, 2010
Creator: Zhang, Y.; Freifeld, B.; Finsterle, S.; Leahy, M.; Ennis-King, J.; Paterson, L. et al.
Object Type: Article
System: The UNT Digital Library
Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010 (open access)

Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1–September 30, 2010

Individual raw datastreams from instrumentation at the Atmospheric Radiation Measurement (ARM) Climate Research Facility fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ARM Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual datastream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998.
Date: October 15, 2010
Creator: Sisterson, D. L.
Object Type: Report
System: The UNT Digital Library
Advanced Accessory Power Supply Topologies (open access)

Advanced Accessory Power Supply Topologies

This Cooperative Research and Development Agreement (CRADA) began December 8, 2000 and ended September 30, 2009. The total funding provided by the Participant (General Motors Advanced Technology Vehicles [GM]) during the course of the CRADA totaled $1.2M enabling the Contractor (UT-Battelle, LLC [Oak Ridge National Laboratory, a.k.a. ORNL]) to contribute significantly to the joint project. The initial task was to work with GM on the feasibility of developing their conceptual approach of modifying major components of the existing traction inverter/drive to develop low cost, robust, accessory power. Two alternate methods for implementation were suggested by ORNL and both were proven successful through simulations and then extensive testing of prototypes designed and fabricated during the project. This validated the GM overall concept. Moreover, three joint U.S. patents were issued and subsequently licensed by GM. After successfully fulfilling the initial objective, the direction and duration of the CRADA was modified and GM provided funding for two additional tasks. The first new task was to provide the basic development for implementing a cascaded inverter technology into hybrid vehicles (including plug-in hybrid, fuel cell, and electric). The second new task was to continue the basic development for implementing inverter and converter topologies and new …
Date: June 15, 2010
Creator: Marlino, L.D.
Object Type: Report
System: The UNT Digital Library
Continuous CO2 Extractor and Methods (open access)

Continuous CO2 Extractor and Methods

The purpose of this CRADA was to assist in technology transfer from Russia to the US and assist in development of the technology improvements and applications for use in the U.S. and worldwide. Over the period of this work, ORNL has facilitated design, development and demonstration of a low-pressure liquid extractor and development of initial design for high-pressure supercritical CO2 fluid extractor.
Date: June 15, 2010
Creator: listed, None
Object Type: Report
System: The UNT Digital Library
A macroscopic relationship for preferential flow in the vadose zone: Theory and Validation (open access)

A macroscopic relationship for preferential flow in the vadose zone: Theory and Validation

Preferential flow commonly observed in unsaturated soils allows rapid movement of solute from the ground surface or vadose zone to the groundwater, bypassing a significant volume of unsaturated soil and increasing the risk of groundwater contamination. A variety of evidence indicates that complex preferential flow patterns observed from fields are fractals. This paper discusses a macroscopic rela-tionship for modeling preferential flow in the vadose zone. Conceptually, the flow domain can be di-vided into active and inactive regions. Flow occurs preferentially in the active region (characterized by fractals), and inactive region is simply bypassed. The portion of the active region was found to be a power function of saturation. The validity of this macroscopic relationship is demonstrated by its consistency with field observations and the related numerical experiments.
Date: February 15, 2010
Creator: Liu, H. H. & Zhang, R. D.
Object Type: Article
System: The UNT Digital Library
Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications (open access)

Lifecycle Assessment of Beijing-Area Building Energy Use and Emissions: Summary Findings and Policy Applications

Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use and carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy …
Date: September 15, 2010
Creator: Aden, Nathaniel; Qin, Yining & Fridley, David
Object Type: Report
System: The UNT Digital Library
Testing of the 3M Company ACCR Conductor (open access)

Testing of the 3M Company ACCR Conductor

The 3M Company has developed a high-temperature low-sag conductor referred to as Aluminum- Conductor Composite-Reinforced or ACCR. The conductor uses an aluminum metal matrix material to replace the steel in conventional conductors so the core has a lower density and higher conductivity. The objective of this work is to accelerate the commercial acceptance by electric utilities of these new conductor designs by testing four representative conductor classes in controlled conditions. Overhead transmission lines use bare aluminum conductor strands wrapped around a steel core strands to transmit electricity. The typical cable is referred to as aluminum-conductor steel-reinforced (ACSR). The outer strands are aluminum, chosen for its conductivity, low weight, and low cost. The center strand is of steel for the strength required to support the weight without stretching the aluminum due to its ductility. The power density of a transmission corridor has been directly increased by increasing the voltage level. Transmission voltages have increased from 115-kV to 765- kV over the past 80 years. In the United States, further increasing the voltage level is not feasible at this point in time, so in order to further increase the power density of a transmission corridor, conductor designs that increase the current carrying …
Date: September 15, 2010
Creator: Stovall, J.P.; RIzy, D.T.; Kisner, R.A. & Deve, H.E. (3M Comp.)
Object Type: Report
System: The UNT Digital Library