Formulations for the "Characterization of unique compounds in explosives" project (open access)

Formulations for the "Characterization of unique compounds in explosives" project

None
Date: March 15, 2006
Creator: Alcaraz, A. & Dougan, A.
Object Type: Report
System: The UNT Digital Library
Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection (open access)

Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection

This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2)storage sites on the basis of health, safety, and environmental (HSE)risk arising from possible CO2 leakage. The approach is based on theassumption that HSE risk due to CO2 leakage is dependent on three basiccharacteristics of a geologic CO2 storage site: (1) the potential forprimary containment by the target formation, (2) the potential forsecondary containment if the primary formation leaks, and (3) thepotential for attenuation and dispersion of leaking CO2 if the primaryformation leaks and secondary containment fails. The framework isimplemented in a spreadsheet in which users enter numerical scoresrepresenting expert opinions or general information available frompublished materials along with estimates of uncertainty to evaluate thethree basic characteristics in order to screen and rank candidate sites.Application of the framework to the Rio Vista Gas Field, Ventura OilField, and Mammoth Mountain demonstrates the approach. Refinements andextensions are possible through the use of more detailed data or modelresults in place of property proxies. Revisions and extensions to improvethe approach are anticipated in the near future as it is used and testedby colleagues and collaborators.
Date: March 15, 2006
Creator: Oldenburg, Curtis M.
Object Type: Article
System: The UNT Digital Library
Heat Deposition in Positron Sources for ILC (open access)

Heat Deposition in Positron Sources for ILC

In the International Linear Collider (ILC) positron source, multi-GeV electrons or multi-MeV photons impinge on a metal target to produce the needed positrons in the resulting electromagnetic showers. The incoming beam power is hundreds of kilowatts. Various computer programs -- such as FLUKA or MARS -- can calculate how the incoming beam showers in the target and can track the particle showers through the positron source system. Most of the incoming energy ends up as heat in the various positron source elements. This paper presents results from such calculations and their impact on the design of a positron source for the ILC.
Date: March 15, 2006
Creator: Bharadwaj, V.; Pitthan, R.; Sheppard, J.; Vincke, H. & Wang, J. W.
Object Type: Article
System: The UNT Digital Library
An Intergrated Hydrogen Production-CO2 Capture Process from Fossil Fuel (open access)

An Intergrated Hydrogen Production-CO2 Capture Process from Fossil Fuel

The major project objective is to determine the feasibility of using the char from coal and/or biomass pyrolysis, ammonia and CO2 emissions at smokestacks to produce clean hydrogen and a sequestered carbon fertilizer. During this work period, the project plan, design and test schedules were made on the basis of discussion with partner in experimental issues. Installation of pilot scale units was finished and major units tests were fully performed. Modification of the pyrolyzer, reformer and gas absorption tank have been done. Integration testing is performing recently. Lab scale tests have been performed. Field tests of char/fertilizer have been conducted.
Date: March 15, 2006
Creator: Wang, Z. & Bota, K. B.
Object Type: Report
System: The UNT Digital Library
Main Coast Winds - Final Scientific Report (open access)

Main Coast Winds - Final Scientific Report

The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.
Date: March 15, 2006
Creator: Huckaby, Jason & Lee, Harley
Object Type: Report
System: The UNT Digital Library
Material Interface Reconstruction for Monte Carlo Particle Tracking (open access)

Material Interface Reconstruction for Monte Carlo Particle Tracking

In this project we implement material interface reconstruction into a large, massively parallel Monte Carlo particle transport code. Here we examine the benefit of resolving a material interface for criticality calculations. Input to the code is a mesh with material and density defined on the mesh. For mesh zones that contain more than one material (mixed zones), the old approximation made in the code is to homogenize the material properties of all the materials in the zone. The neutron mean free path is a function of the material density that the neutron is traveling through, so for mixed zones, we use the average density of the zone, rather than reconstructing a material interface, determining which material within the zone the particle is in and using the correct density based on the position of the particle within the zone. In order to get a better answer, here we implement material interface reconstruction and rather than homogenizing the materials in a mixed zone, we have a material interface divide the zone so we can tell which material the particle is in, based on the particle's position and the location of the material interface.
Date: March 15, 2006
Creator: O'Brien, M J
Object Type: Report
System: The UNT Digital Library
Pasture Management Strategies for Sequestering Soil Carbon - Final Report (open access)

Pasture Management Strategies for Sequestering Soil Carbon - Final Report

Pasturelands account for 51 of the 212 Mha of privately held grazing land in the USA. Tall fescue is the most important cool-season perennial forage for many beef cattle producers in the humid region of the USA. A fungal endophyte, Neotyphodium coenophialum, infects the majority of tall fescue stands with a mutualistic association. Ergot alkaloids produced by the endophyte have negative impacts on cattle performance. However, there are indications that endophyte infection of tall fescue is a necessary component of productive and persistent pasture ecology. The objectives of this research were to characterize and quantify changes in soil organic carbon and associated soil properties under tall fescue pastures with and without endophyte infection of grass. Pastures with high endophyte infection had greater concentration of soil organic carbon, but lower concentration of biologically active soil carbon than pastures with low endophyte infection. A controlled experiment suggested that endophyte-infected leaf tissue may directly inhibit the activity of soil microorganisms. Carbon forms of soil organic matter were negatively affected and nitrogen forms were positively affected by endophyte addition to soil. The chemical compounds in endophyte-infected tall fescue (ergot alkaloids) that are responsible for animal health disorders were found in soil, suggesting that these …
Date: March 15, 2006
Creator: Franzluebbers, Alan J.
Object Type: Report
System: The UNT Digital Library
Post-Irradiation Properties of Candidate Materials for High-Power Targets (open access)

Post-Irradiation Properties of Candidate Materials for High-Power Targets

The desire of the high-energy-physics community for more intense secondary particle beams motivates the development of multi-megawatt, pulsed proton sources. The targets needed to produce these secondary particle beams must be sufficiently robust to withstand the intense pressure waves arising from the high peak-energy deposition which an intense pulsed beam will deliver. In addition, the materials used for the targets must continue to perform in a severe radiation environment. The effect of the beam induced pressure waves can be mitigated by use of target materials with high-yield strength and/or low coefficient of thermal expansion (CTE). We report here first results of an expanded study of the effects of irradiation on several additional candidate materials with high strength (AlBeMet, beryllium, Ti-V6-Al4) or low CTE (a carbon-carbon composite, a new Toyota ''gum'' metal alloy, Super-Invar).
Date: March 15, 2006
Creator: Kirk, H. G.; Ludewig, H.; Mausner, L. F.; Simos, N.; Thieberger, P.; Hayato, Y. et al.
Object Type: Article
System: The UNT Digital Library
Proposal for a High-Brightness Pulsed Electron Source (open access)

Proposal for a High-Brightness Pulsed Electron Source

We propose a novel scheme for a high-brightness pulsedelectron source, which has the potential for many useful applications inelectron microscopy, inverse photo-emission, low energy electronscattering experiments, and electron holography. A description of theproposed scheme is presented.
Date: March 15, 2006
Creator: Zolotorev, Max; Commins, Eugene D.; Heifets, Sam & Sannibale,Fernando
Object Type: Article
System: The UNT Digital Library
Revealing the Jet Structure of Grb 030329 With High Resolution Multicolor Photometry (open access)

Revealing the Jet Structure of Grb 030329 With High Resolution Multicolor Photometry

We present multicolor optical observations of the nearby (z = 0.1685) GRB030329 obtained with the same instrumentation over a time period of 6 hours for a total of an unprecedented 475 quasi-simultaneous B V R observations. The achromatic steepening in the optical, which occurs at t {approx} 0.7 days, provides evidence for a dynamic transition of the source, and can be most readily explained by models in which the GRB ejecta are collimated into a jet. Since the current state-of-the-art modeling of GRB jets is still flawed with uncertainties, we use these data to critically assess some classes of models that have been proposed in the literature. The data, especially the smooth decline rate seen in the optical afterglow, are consistent with a model in which GRB030329 was a homogeneous, sharp-edged jet, viewed near its edge interacting with a uniform external medium, or viewed near its symmetry axis with a stratified wind-like external environment. The lack of short timescale fluctuations in the optical afterglow flux down to the 0.5 per cent level puts stringent constraints on possible small scale angular inhomogeneities within the jet or fluctuations in the external density.
Date: March 15, 2006
Creator: Gorosabel, Javier; Castro-Tirado, A. J.; Ramirez-Ruiz, E.; Granot, J.; Caon, N.; Cairos, L. M. et al.
Object Type: Report
System: The UNT Digital Library
Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods (open access)

Smart Energy Management and Control for Fuel Cell Based Micro-Grid Connected Neighborhoods

Fuel cell power generation promises to be an efficient, pollution-free, reliable power source in both large scale and small scale, remote applications. DOE formed the Solid State Energy Conversion Alliance with the intention of breaking one of the last barriers remaining for cost effective fuel cell power generation. The Alliance’s goal is to produce a core solid-state fuel cell module at a cost of no more than $400 per kilowatt and ready for commercial application by 2010. With their inherently high, 60-70% conversion efficiencies, significantly reduced carbon dioxide emissions, and negligible emissions of other pollutants, fuel cells will be the obvious choice for a broad variety of commercial and residential applications when their cost effectiveness is improved. In a research program funded by the Department of Energy, the research team has been investigating smart fuel cell-operated residential micro-grid communities. This research has focused on using smart control systems in conjunction with fuel cell power plants, with the goal to reduce energy consumption, reduce demand peaks and still meet the energy requirements of any household in a micro-grid community environment. In Phases I and II, a SEMaC was developed and extended to a micro-grid community. In addition, an optimal configuration was …
Date: March 15, 2006
Creator: Alam, Dr. Mohammad S.
Object Type: Report
System: The UNT Digital Library
Structural proteomics of minimal organisms: conservation ofprotein fold usage and evolutionary implications (open access)

Structural proteomics of minimal organisms: conservation ofprotein fold usage and evolutionary implications

Background: Determining the complete repertoire of proteinstructures for all soluble, globular proteins in a single organism hasbeen one of the major goals of several structural genomics projects inrecent years. Results: We report that this goal has nearly been reachedfor several "minimal organisms"--parasites or symbionts with reducedgenomes--for which over 95 percent of the soluble, globular proteins maynow be assigned folds, overall 3-D backbone structures. We analyze thestructures of these proteins as they relate to cellular functions, andcompare conservation off old usage between functional categories. We alsocompare patterns in the conservation off olds among minimal organisms andthose observed between minimal organisms and other bacteria. Conclusion:We find that proteins performing essential cellular functions closelyrelated to transcription and translation exhibit a higher degree ofconservation in fold usage than proteins in other functional categories.Folds related to transcription and translation functional categories werealso over represented in minimal organisms compared to otherbacteria.
Date: March 15, 2006
Creator: Chandonia, John-Marc & Kim, Sung-Hou
Object Type: Article
System: The UNT Digital Library
Studies of Room Temperature Accelerator Structures for the ILC Positron Source (open access)

Studies of Room Temperature Accelerator Structures for the ILC Positron Source

There are many challenges in the design of the normal-conducting portion of the ILC positron injector system such as achieving adequate cooling with the high RF and particle loss heating, and sustaining high accelerator gradients during millisecond-long pulses in a strong magnetic field. The proposed design for the positron injector contains both standing-wave and traveling-wave L-band accelerator structures for high RF efficiency, low cost and ease of fabrication. This paper presents results from several studies including particle energy deposition for both undulator based and conventional positron sources, cooling system design, accelerator structure optimization, RF pulse heating, cavity frequency stabilization, and RF feed system design.
Date: March 15, 2006
Creator: Wang, J. W.; Adolphsen, C.; Bharadwaj, V.; Bowden, G. B.; Dolgashev, V. A.; Jones, R. M. et al.
Object Type: Article
System: The UNT Digital Library
Taming the Runaway Problem of Inflationary Landscapes (open access)

Taming the Runaway Problem of Inflationary Landscapes

A wide variety of vacua, and their cosmological realization, may provide an explanation for the apparently anthropic choices of some parameters of particle physics and cosmology. If the probability on various parameters is weighted by volume, a flat potential for slow-roll inflation is also naturally understood, since the flatter the potential the larger the volume of the sub-universe. However, such inflationary landscapes have a serious problem, predicting an environment that makes it exponentially hard for observers to exist and giving an exponentially small probability for a moderate universe like ours. A general solution to this problem is proposed, and is illustrated in the context of inflaton decay and leptogenesis, leading to an upper bound on the reheating temperature in our sub-universe. In a particular scenario of chaotic inflation and non-thermal leptogenesis, predictions can be made for the size of CP violating phases, the rate of neutrinoless double beta decay and, in the case of theories with gauge-mediated weak scale supersymmetry, for the fundamental scale of supersymmetry breaking.
Date: March 15, 2006
Creator: Hall, Lawrence J.; Watari, Taizan & Yanagida, T. T.
Object Type: Article
System: The UNT Digital Library
Uncertainty in the reactive transport model response to analkaline perturbation in a clay formation (open access)

Uncertainty in the reactive transport model response to analkaline perturbation in a clay formation

The mineral alteration in the concrete barrier and in the clay formation around long-lived intermediate-level radioactive waste in the French deep geological disposal concept is evaluated using numerical modeling. There are concerns that the mineralogical composition of the surrounded clay will not be stable under the high alkaline pore fluid conditions caused by concrete (pH {approx} 12). Conversely, the infiltration of CO{sub 2}-rich groundwater from the clay formation into initially unsaturated concrete, at the high temperature (T {approx} 70 C) produced from the decay of radionuclides, could cause carbonation, thereby potentially affecting critical performance functions of this barrier. This could also lead to significant changes in porosity, which would affect aqueous diffusive transport of long-lived radionuclides. All these processes are therefore intimately coupled and advanced reactive transport models are required for long-term performance assessment. The uncertainty in predictions of these models is one major question that must be answered. A mass-transfer model response to an alkaline perturbation in clay with standard model values is first simulated using the two-phase non-isothermal reactive transport code TOUGHREACT. The selection of input parameters is thereafter designed to sample uncertainties in a wide range of physico-chemical processes without making a priori assumptions about the relative …
Date: March 15, 2006
Creator: Burnol, A.; Blanc, P.; Xu, T.; Spycher, N. & Gaucher, E. C.
Object Type: Article
System: The UNT Digital Library
Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology (open access)

Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel …
Date: April 15, 2006
Creator: Muralidharan, G.; Sikka, V. K. & Pankiw, R. I.
Object Type: Report
System: The UNT Digital Library
The Education and Outreach Project of ATLAS - A New Participant inPhysics Education (open access)

The Education and Outreach Project of ATLAS - A New Participant inPhysics Education

The ATLAS experiment at the Large Hadron Collider at CERN has a substantial collaborative Education and Outreach project. This article describes its activities and how it promotes physics to students around the world. With the extraordinary possibility to make groundbreaking discoveries, the ATLAS Experiment [1] at the Large Hadron Collider at CERN can play an important role in promoting contemporary physics at school. For many years ATLAS has had a substantial collaborative Education and Outreach (E&O) project in which physicists from various parts of the world take part. When the experiment begins in 2007, students from around the world will be analyzing data using cutting-edge technology. The unprecedented collision energies of the Large Hadron Collider allow ATLAS to decode the 'events' that unfold after the head-on collisions of protons (Fig. 1). The scientific results from these events will reveal much about the basic nature of matter, energy, space, and time. Students and others will be excited as they try to find events that may be signs for dark matter, extra dimensions of space, mini-black holes, string theory, and other fundamental discoveries. Science education and outreach and the promotion of awareness and appreciation of physics research have become important tasks for …
Date: April 15, 2006
Creator: Barnett, R. Michael & Johansson, K. Erik
Object Type: Article
System: The UNT Digital Library
Electron Cloud induced instabilities in the Fermilab Main Injector(MI) for the High Intensity Neutrino Source (HINS) project (open access)

Electron Cloud induced instabilities in the Fermilab Main Injector(MI) for the High Intensity Neutrino Source (HINS) project

The electrostatic particle-in-cell codeWARP is currently being expanded in order to study electron cloud effects on the dynamics of the beam in storage rings. Results for the Fermilab main injector (MI) show the existence of a threshold in the electron density beyond which there is rapid emittance growth. The Fermilab MI is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort, which will result in a significant increasing of the bunch intensity relative to its present value, placing it in a regime where electron-cloud effects are expected to become important. Various results from the simulations using WARP are discussed here.
Date: April 15, 2006
Creator: Sonnad, Kiran G.; Furman, Miguel A.; Vay, Jean-Luc; Venturini,Marco; Celata, Christine & Grote, David
Object Type: Article
System: The UNT Digital Library
High Technology Centrifugal Compressor for Commercial Air Conditioning Systems (open access)

High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was …
Date: April 15, 2006
Creator: Ruckes, John
Object Type: Report
System: The UNT Digital Library
Indoor Thermal Comfort, an Evolutionary Biology Perspective (open access)

Indoor Thermal Comfort, an Evolutionary Biology Perspective

As is becoming increasingly clear, the human species evolvedin the East African savannah. Details of the precise evolutionary chainremain unresolved however it appears that the process lasted severalmillion years, culminating with the emergence of modern Homo sapiensroughly 200,000 years ago. Following that final evolutionary developmentmodern Homo sapiens relatively quickly populated the entire world.Clearly modern Homo sapiens is a successful, resourceful and adaptablespecies. In the developed societies, modern humans live an existence farremoved from our evolutionary ancestors. As we have learned over the lastcentury, this "new" lifestyle can often result in unintendedconsequences. Clearly, our modern access to food, shelter, transportationand healthcare has resulted in greatly expanded expected lifespan butthis new lifestyle can also result in the emergence of different kinds ofdiseases and health problems. The environment in modern buildings haslittle resemblance to the environment of the savannah. We strive tocreate environments with little temperature, air movement and lightvariation. Building occupants often express great dissatisfaction withthese modern created environments and a significant fraction even developsomething akin to allergies to specific buildings (sick buildingsyndrome). Are the indoor environments we are creating fundamentallyunhealthy -- when examined from an evolutionary perspective?
Date: April 15, 2006
Creator: Stoops, John L.
Object Type: Article
System: The UNT Digital Library
SIMULATION AND ANALYSIS OF MICROWAVE TRANSMISSION THROUGH ANELECTRON CLOUD, A COMPARISON OF RESULTS (open access)

SIMULATION AND ANALYSIS OF MICROWAVE TRANSMISSION THROUGH ANELECTRON CLOUD, A COMPARISON OF RESULTS

Simulation studies for transmission of microwaves through electron clouds show good agreement with analytic results. The electron cloud produces a shift in phase of the microwave. Experimental observation of this phenomena would lead to a useful diagnostic tool for accessing the local density of electron clouds in an accelerator. These experiments are being carried out at the CERN SPS and the PEP-II LER at SLAC and is proposed to be done at the Fermilab main injector. In this study, a brief analysis of the phase shift is provided and the results are compared with that obtained from simulations.
Date: April 15, 2006
Creator: Sonnad, Kiran G.; Furman, Miguel; Veitzer, Seth A. & Cary, John
Object Type: Article
System: The UNT Digital Library
Simulations of Electron Cloud Effects on the Beam Dynamics for theFNAL Main Injector Upgrade (open access)

Simulations of Electron Cloud Effects on the Beam Dynamics for theFNAL Main Injector Upgrade

The Fermilab main injector (MI) is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort. This upgrade will involve a significant increasing of the bunch intensity relative to its present value. Such an increase will place the MI in a regime in which electron-cloud effects are expected to become important. We have used the electrostatic particle-in-cell code WARP, recently augmented with new modeling capabilities and simulation techniques, to study the dynamics of beam-electron cloud interaction. This work in progress involves a systematic assessment of beam instabilities due to the presence of electron clouds.
Date: April 15, 2006
Creator: G., Sonnad Kiran; Furman, Miguel; Vay, Jean-Luc; Venturini, Marco; Celata, Christine M. & Grote, David
Object Type: Article
System: The UNT Digital Library
Computer Calculations of Eddy-Current Power Loss in Rotating Titanium Wheels and Rims in Localized Axial Magnetic Fields (open access)

Computer Calculations of Eddy-Current Power Loss in Rotating Titanium Wheels and Rims in Localized Axial Magnetic Fields

We have performed preliminary computer-based, transient, magnetostatic calculations of the eddy-current power loss in rotating titanium-alloy and aluminum wheels and wheel rims in the predominantly axially-directed, steady magnetic fields of two small, solenoidal coils. These calculations have been undertaken to assess the eddy-current power loss in various possible International Linear Collider (ILC) positron target wheels. They have also been done to validate the simulation code module against known results published in the literature. The commercially available software package used in these calculations is the Maxwell 3D, Version 10, Transient Module from the Ansoft Corporation.
Date: May 15, 2006
Creator: Mayhall, D. J.; Stein, W. & Gronberg, J. B.
Object Type: Report
System: The UNT Digital Library
Concentrations of Radionuclides and Trace Elements in Environmantal Media arond te Dual-Axis Radiographic Hydrodynamic Test Facilit at Los Alamos National Laboratory during 2005 (open access)

Concentrations of Radionuclides and Trace Elements in Environmantal Media arond te Dual-Axis Radiographic Hydrodynamic Test Facilit at Los Alamos National Laboratory during 2005

The Mitigation Action Plan (MAP) for the Dual-Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory requires that samples of biotic and abiotic media be collected after operations began to determine if there are any human health or environmental impacts. The DARHT facility is the Laboratory's principal explosive test facility. To this end, samples of soil and sediment, vegetation, bees, and birds were collected around the facility in 2005 and analyzed for concentrations of {sup 3}H, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, {sup 234}U, {sup 235}U, {sup 238}U, Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Bird populations have also been monitored. Contaminant results, which represent up to six sample years since the start of operations, were compared with (1) baseline statistical reference levels (BSRLs) established over a four-year preoperational period before DARHT facility operations, (2) screening levels (SLs), and (3) regulatory standards. Most radionuclides and trace elements were below BSRLs and those few samples that contained radionuclides and trace elements above BSRLs were below SLs. Concentrations of radionuclides and nonradionuclides in biotic and abiotic media around the DARHT facility do not pose a significant human health hazard. …
Date: May 15, 2006
Creator: Gonzales, G. J.; Fresquez, P.R.; C.D.Hathcock & Keller, D.C.
Object Type: Report
System: The UNT Digital Library