Taming the Runaway Problem of Inflationary Landscapes (open access)

Taming the Runaway Problem of Inflationary Landscapes

A wide variety of vacua, and their cosmological realization, may provide an explanation for the apparently anthropic choices of some parameters of particle physics and cosmology. If the probability on various parameters is weighted by volume, a flat potential for slow-roll inflation is also naturally understood, since the flatter the potential the larger the volume of the sub-universe. However, such inflationary landscapes have a serious problem, predicting an environment that makes it exponentially hard for observers to exist and giving an exponentially small probability for a moderate universe like ours. A general solution to this problem is proposed, and is illustrated in the context of inflaton decay and leptogenesis, leading to an upper bound on the reheating temperature in our sub-universe. In a particular scenario of chaotic inflation and non-thermal leptogenesis, predictions can be made for the size of CP violating phases, the rate of neutrinoless double beta decay and, in the case of theories with gauge-mediated weak scale supersymmetry, for the fundamental scale of supersymmetry breaking.
Date: March 15, 2006
Creator: Hall, Lawrence J.; Watari, Taizan & Yanagida, T. T.
Object Type: Article
System: The UNT Digital Library
THz radiation as a bunch diagnostic forlaser-wakefield-accelerated electron bunches (open access)

THz radiation as a bunch diagnostic forlaser-wakefield-accelerated electron bunches

Experimental results are reported from two measurementtechniques (semiconductor switching and electro-optic sampling) thatallow temporal characterization of electron bunches produced by alaser-driven plasma-based accelerator. As femtosecond electron bunchesexit the plasma-vacuum interface, coherent transition radiation (at THzfrequencies) is emitted. Measuring the properties of this radiationallows characterization of the electron bunches. Theoretical work on theemission mechanism is represented, including a model that calculates theTHz waveform from a given bunch profile. It is found that the spectrum ofthe THz pulse is coherent up to the 200 mu m thick crystal (ZnTe)detection limit of 4 THz, which corresponds to the production of sub-50fs (root-mean-square) electron bunch structure. The measurementsdemonstrate both the shot-to-shot stability of bunch parameters that arecritical to THz emission (such as total charge and bunch length), as wellas femtosecond synchrotron between bunch, THz pulse, and laserbeam.
Date: February 15, 2006
Creator: van Tilborg, J.; Schroeder, C. B.; Filip, C. V.; Toth, Cs.; Geddes, C. G. R.; Fubiani, G. et al.
Object Type: Article
System: The UNT Digital Library
Characterization of Turbiditic Oil Reservoirs Based on Geophysical Models of their Formation (open access)

Characterization of Turbiditic Oil Reservoirs Based on Geophysical Models of their Formation

Models are developed and solved to describe the flow of and deposition from low and high concentration turbidity currents. The shallow water equations are amended to include particle transport to describe the low concentration turbidity currents. The suspension balance model is used to describe the high concentration turbidity currents. Numerical simulations are developed to solve the highly non-linear, free boundary problems associated with these models. Simpler, algebraic scaling relationships are also developed for these models. The models are successfully validated against field observations of turbidites. With these models, one can take seismic information on the shape of the turbiditic deposit and estimate the particle size, which can be used to determine the porosity and permeability.
Date: January 15, 2006
Creator: Bonnecaze, Roger
Object Type: Report
System: The UNT Digital Library
High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability. I. Comparison to experimental data and to amplitude growth model predictions (open access)

High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability. I. Comparison to experimental data and to amplitude growth model predictions

The reshocked single-mode Richtmyer-Meshkov instability is simulated in two spatial dimensions using the fifth- and ninth-order weighted essentially non-oscillatory shock-capturing method with uniform spatial resolution of 256 points per initial perturbation wavelength. The initial conditions and computational domain are modeled after the single-mode, Mach 1.21 air(acetone)/SF{sub 6} shock tube experiment of Collins and Jacobs [J. Fluid Mech. 464, 113 (2002)]. The simulation densities are shown to be in very good agreement with the corrected experimental planar laser-induced fluorescence images at selected times before reshock of the evolving interface. Analytical, semianalytical and phenomenological linear and nonlinear, impulsive, perturbation and potential flow models for single-mode Richtmyer-Meshkov unstable perturbation growth are summarized. The simulation amplitudes are shown to be in very good agreement with the experimental data and with the predictions of linear amplitude growth models for small times and with those of nonlinear amplitude growth models at later times up to the time at which the driver-based expansion in the experiment (but not present in the simulations or models) expands the layer before reshock. The qualitative and quantitative differences between the fifth- and ninth-order simulation results are discussed. Using a local and global quantitative metric, the prediction of the Zhang and Sohn …
Date: May 15, 2006
Creator: Latini, M; Schilling, O & Don, W
Object Type: Article
System: The UNT Digital Library
Biosynthesis of the Cyclotide MCoTI-II using an Engineered Intein (open access)

Biosynthesis of the Cyclotide MCoTI-II using an Engineered Intein

Cyclotides are an emerging family of naturally occurring circular mini-proteins ({approx}30-40 amino acids) characterized by six conserved Cys residues (forming 3 disulfide bridges) that create a topologically unique structure designated as a cyclic cysteine knot (CCK). The cysteine knot motif, which is embedded within the macrocylic backbone, is described as two disulfide bridges that form a ring that is penetrated by the third disulfide bridge. The cyclic backbone and CCK motif together confer cyclotides with a remarkable stability and resistance to proteolytic, chemical, and thermal degradation. Further, cyclotides are functionally diverse and display a wide range of functions including uterotonic activity, trypsin inhibition, cytotoxicity, neurotensin binding, anti-HIV, antimicrobial, and insecticidal activity. Together, these characteristics make cyclotides attractive candidates for both drug design and agricultural applications, both in their native forms and as molecular scaffolds for the incorporation of novel bioactivities. [1] The ability to manipulate production of cyclotides within biological systems is critical for mutagenesis studies, production of grafted products, and the mass production of cyclotides with novel activities. My adviser's hope is to achieve this capability by employing recombinant DNA expression techniques to generate large combinatorial libraries of cyclotides. The advantage in creating a biosynthetic library (containing {approx}10{sup 6}-10{sup …
Date: August 15, 2006
Creator: Cantor, J & Camarero, J A
Object Type: Report
System: The UNT Digital Library
Target Plate Conditions During Stochastic Boundary Operation on DIII-D (open access)

Target Plate Conditions During Stochastic Boundary Operation on DIII-D

A major concern for large tokamaks like ITER is the presence of edge localized modes (ELMs) that repeatedly send large bursts of particles and heat into the divertor plates. Operation with resonant magnetic perturbations (RMP) at the boundary of DIII=D has suppressed ELMs for values of q95 {approx} 3.7. At the target plate, the conditions during ELM suppressed operation for both high and low collisionality are observed by a set of radially distributed Langmuir probes. At high collisionality (n*{approx}1), the target plate particle flux and temperature drops by > 30% during ELM suppression. At low collisionality (n*{approx}0.1), the core density, target plate density, and target plate particle flux drop but the plate electron temperature increases after the ELMs are suppressed. The ELM-suppressed target plate heat flux is nearly the same as the heat flux between ELMs but the (5X higher) transient heat flux peaks due to ELMs are eliminated.
Date: May 15, 2006
Creator: Watkins, J; Evans, T; Moyer, R; Lasnier, C & Rudakov, D
Object Type: Article
System: The UNT Digital Library
Experimental and Numerical Studies of Separatrix Splitting and Magnetic Footprints in DIII-D (open access)

Experimental and Numerical Studies of Separatrix Splitting and Magnetic Footprints in DIII-D

A numerical field line integration code is used to study the structure of divertor footprints produced by small non-axisymmetric magnetic perturbation in the DIII-D tokamak. The numerical modeling results are compared to experimental infrared camera data which show a splitting of the divertor target plate heat flux into several distinct peaks when an n=3 magnetic perturbation from the DIII-D I-coil is applied. The heat flux splitting consistently appears when the n=3 perturbation is applied and disappears when the perturbation is removed. The magnitude of the splitting implied by the numerical modeling is a factor of 3 smaller than the splitting seen in the experimental data. These results suggest that the plasma response to the edge resonant applied n=3 magnetic perturbation produces an amplification of the vacuum magnetic footprint structure on the divertor target plates. These results may have significant implications for the ITER divertor design.
Date: May 15, 2006
Creator: Evans, T; Joseph, I; Moyer, R; Fenstermacher, M; Lasnier, C & Yan, L
Object Type: Article
System: The UNT Digital Library
The histone H3K9 methylation and RNAi pathways regulate normalnucleolar and repeated DNA organization by inhibiting formation ofextrachromosomal DNAs (open access)

The histone H3K9 methylation and RNAi pathways regulate normalnucleolar and repeated DNA organization by inhibiting formation ofextrachromosomal DNAs

In order to identify regulators of nuclear organization, Drosophila mutants in the Su(var)3-9 histone H3K9 methyltransferase, RNAi pathway components, and other regulators of heterochromatin-mediated gene silencing were examined for altered nucleoli and positioning of repeated DNAs. Animals lacking components of the H3K9 methylation and RNAi pathways contained disorganized nucleoli, ribosomal DNA (rDNA) and satellite DNAs. The levels of H3K9 dimethylation (H3K9me2) in chromatin associated with repeated DNAs decreased dramatically in Su(var)3-9 and dcr-2 (dicer-2) mutant tissues compared to wild type. We also observed a substantial increase in extrachromosomal repeated DNAs in mutant tissues. The disorganized nucleolus phenotype depends on the presence of Ligase 4 (Lig4), and ecc DNA formation is not induced by removal of cohesin. We conclude that H3K9 methylation of rDNA and satellites, maintained by Su(var)3-9, HP1, and the RNAi pathway, is necessary for the structural stability of repeated DNAs, which is mediated through suppression of non-homologous end joining (NHEJ). These results suggest a mechanism for how local chromatin structure can regulate genome stability, and the organization of chromosomal elements and nuclear organelles.
Date: June 15, 2006
Creator: Peng, Jamy C. & Karpen, Gary H.
Object Type: Article
System: The UNT Digital Library
Shear-slip analysis in multiphase fluid-flow reservoir engineeringap plications using TOUGH-FLAC (open access)

Shear-slip analysis in multiphase fluid-flow reservoir engineeringap plications using TOUGH-FLAC

This paper describes and demonstrates the use of the coupledTOUGH-FLAC simulator for geomechanical shear-slip (failure) analysis inmultiphase fluid-flow reservoir-engineering applications. Two approachesfor analyzing shear-slip are described, one using continuum stress-strainanalysis and another using discrete fault analysis. The use of shear-slipanalysis in TOUGH-FLAC is demonstrated on application examples related toCO2 sequestration and geothermal energy extraction. In the case of CO2sequestration, the shear-slip analysis is used to evaluate maximumsustainable CO2-injection pressure under increasing reservoir pressure,whereas in the case of geothermal energy extraction, the shear-slipanalysis is used to study induced seismicity during steam productionunder decreasing reservoir pressure and temperature.
Date: January 15, 2006
Creator: Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg,Curt & Tsang, Chin-Fu
Object Type: Article
System: The UNT Digital Library
The Education and Outreach Project of ATLAS - A New Participant inPhysics Education (open access)

The Education and Outreach Project of ATLAS - A New Participant inPhysics Education

The ATLAS experiment at the Large Hadron Collider at CERN has a substantial collaborative Education and Outreach project. This article describes its activities and how it promotes physics to students around the world. With the extraordinary possibility to make groundbreaking discoveries, the ATLAS Experiment [1] at the Large Hadron Collider at CERN can play an important role in promoting contemporary physics at school. For many years ATLAS has had a substantial collaborative Education and Outreach (E&O) project in which physicists from various parts of the world take part. When the experiment begins in 2007, students from around the world will be analyzing data using cutting-edge technology. The unprecedented collision energies of the Large Hadron Collider allow ATLAS to decode the 'events' that unfold after the head-on collisions of protons (Fig. 1). The scientific results from these events will reveal much about the basic nature of matter, energy, space, and time. Students and others will be excited as they try to find events that may be signs for dark matter, extra dimensions of space, mini-black holes, string theory, and other fundamental discoveries. Science education and outreach and the promotion of awareness and appreciation of physics research have become important tasks for …
Date: April 15, 2006
Creator: Barnett, R. Michael & Johansson, K. Erik
Object Type: Article
System: The UNT Digital Library
Nanocrystal Solar Cells (open access)

Nanocrystal Solar Cells

This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.
Date: December 15, 2006
Creator: Gur, Ilan
Object Type: Thesis or Dissertation
System: The UNT Digital Library
Indoor Thermal Comfort, an Evolutionary Biology Perspective (open access)

Indoor Thermal Comfort, an Evolutionary Biology Perspective

As is becoming increasingly clear, the human species evolvedin the East African savannah. Details of the precise evolutionary chainremain unresolved however it appears that the process lasted severalmillion years, culminating with the emergence of modern Homo sapiensroughly 200,000 years ago. Following that final evolutionary developmentmodern Homo sapiens relatively quickly populated the entire world.Clearly modern Homo sapiens is a successful, resourceful and adaptablespecies. In the developed societies, modern humans live an existence farremoved from our evolutionary ancestors. As we have learned over the lastcentury, this "new" lifestyle can often result in unintendedconsequences. Clearly, our modern access to food, shelter, transportationand healthcare has resulted in greatly expanded expected lifespan butthis new lifestyle can also result in the emergence of different kinds ofdiseases and health problems. The environment in modern buildings haslittle resemblance to the environment of the savannah. We strive tocreate environments with little temperature, air movement and lightvariation. Building occupants often express great dissatisfaction withthese modern created environments and a significant fraction even developsomething akin to allergies to specific buildings (sick buildingsyndrome). Are the indoor environments we are creating fundamentallyunhealthy -- when examined from an evolutionary perspective?
Date: April 15, 2006
Creator: Stoops, John L.
Object Type: Article
System: The UNT Digital Library
Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection (open access)

Health, Safety, and Environmental Screening and Ranking Frameworkfor Geologic CO2 Storage Site Selection

This report describes a screening and ranking framework(SRF) developed to evaluate potential geologic carbon dioxide (CO2)storage sites on the basis of health, safety, and environmental (HSE)risk arising from possible CO2 leakage. The approach is based on theassumption that HSE risk due to CO2 leakage is dependent on three basiccharacteristics of a geologic CO2 storage site: (1) the potential forprimary containment by the target formation, (2) the potential forsecondary containment if the primary formation leaks, and (3) thepotential for attenuation and dispersion of leaking CO2 if the primaryformation leaks and secondary containment fails. The framework isimplemented in a spreadsheet in which users enter numerical scoresrepresenting expert opinions or general information available frompublished materials along with estimates of uncertainty to evaluate thethree basic characteristics in order to screen and rank candidate sites.Application of the framework to the Rio Vista Gas Field, Ventura OilField, and Mammoth Mountain demonstrates the approach. Refinements andextensions are possible through the use of more detailed data or modelresults in place of property proxies. Revisions and extensions to improvethe approach are anticipated in the near future as it is used and testedby colleagues and collaborators.
Date: March 15, 2006
Creator: Oldenburg, Curtis M.
Object Type: Article
System: The UNT Digital Library
Saving Water Saves Energy (open access)

Saving Water Saves Energy

Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced …
Date: June 15, 2006
Creator: McMahon, James E.; Whitehead, Camilla Dunham & Biermayer, Peter
Object Type: Article
System: The UNT Digital Library
Modeling National Impacts for the Building America Program (open access)

Modeling National Impacts for the Building America Program

In this paper we present a model to estimate the nationalenergy and economic impacts of the Department of Energy Building Americaprogram. The program goal is to improve energy performance in newresidential construction, by working with builders to design andconstruct energy-efficient homes at minimal cost. The model is anadaptation of the method used to calculate the national energy savingsfor appliance energy efficiency standards. The main difference is thatthe key decision here is not the consumer decision to buy anefficienthouse, but rather the builder decision to offer such a house inthe market. The builder decision is treated by developing a number ofscenarios in which the relative importance of first costs vs. energysavings is varied.
Date: June 15, 2006
Creator: Coughlin, Katie M. & McNeil, Michael A.
Object Type: Report
System: The UNT Digital Library
Report on efforts to model and replicate the paths of the CarbonExplorers deployed April 2001 (NOAA GC04-304 (James Bishop, PI) (open access)

Report on efforts to model and replicate the paths of the CarbonExplorers deployed April 2001 (NOAA GC04-304 (James Bishop, PI)

This report is intended to document the efforts I made tomodel the North Pacific in order to understand the path of the CarbonExplorers, deployed April 10, 2001. Interestingly, these floats movedwestward and northward in the first two months after deployment at OceanStation PAPA (hereafter, OSP), rather than eastward as expected. Myintent was to force the model with the observed winds and temperatures inorder to replicate the path of the floats during this time period. I thenwanted to compare these paths with the conditions in 2003, when thefloats took a more accelerated path and saw different biomass signatures.Unfortunately, I was never able to replicate the path of the 2001 floats:the model floats always went eastward. So, this report is a documentationof what I tried, some thoughts about why I was not successful, and afinal section explaining where the files are located at NERSC, in casesomeone else wants to expand on the current work.
Date: January 15, 2006
Creator: Henning, Cara
Object Type: Report
System: The UNT Digital Library
High-voltage-compatible, fully depleted CCDs (open access)

High-voltage-compatible, fully depleted CCDs

We describe charge-coupled device (CCD) developmentactivities at the Lawrence Berkeley National Laboratory (LBNL).Back-illuminated CCDs fabricated on 200-300 mu m thick, fully depleted,high-resistivity silicon substrates are produced in partnership with acommercial CCD foundry.The CCDs are fully depleted by the application ofa substrate bias voltage. Spatial resolution considerations requireoperation of thick, fully depleted CCDs at high substrate bias voltages.We have developed CCDs that are compatible with substrate bias voltagesof at least 200V. This improves spatial resolution for a given thickness,and allows for full depletion of thicker CCDs than previously considered.We have demonstrated full depletion of 650-675 mu m thick CCDs, withpotential applications in direct x-ray detection. In this work we discussthe issues related to high-voltage operation of fully depleted CCDs, aswell as experimental results on high-voltage-compatible CCDs.
Date: May 15, 2006
Creator: Holland, Stephen E.; Bebek, Chris J.; Dawson, Kyle S.; Emes, JohnE.; Fabricius, Max H.; Fairfield, Jessaym A. et al.
Object Type: Article
System: The UNT Digital Library
Ductility Characterization of U-6Nb and Ta-W Alloys (open access)

Ductility Characterization of U-6Nb and Ta-W Alloys

We have previously evaluated the ductility behaviors of U-6Nb and pure Ta. One important observation was that both alloys have very stable necking ductility independent of test conditions. In contrast, uniform ductility varied significantly depending upon strain rates and temperatures. In general, higher strain rate and lower temperature reduce the uniform ductility. Using literature data, we have developed two dynamic ductility models to predict the ductility behaviors of pure-Ta and water-quenched U-6Nb respectively under extreme conditions. In this study we further evaluate the aging effect on U-6Nb and the W-addition effect on Ta. For U-6Nb, the objective is to determine whether or not the ductility degradation by low-temperature aging mostly measured in quasi-static condition can still be observed under dynamic loading (high strain rate) condition. For Ta-W alloys, the focus is to identify the key control parameter so that the optimal condition of high-strength/high-ductility of Ta-10W can be achieved for certain defense-related applications.
Date: September 15, 2006
Creator: Sun, T & Cervantes, O
Object Type: Article
System: The UNT Digital Library
Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology (open access)

Development of Stronger and More Reliable Cast Austenitic Stainless Steels (H-Series) Based on Scientific Design Methodology

The goal of this program was to increase the high-temperature strength of the H-Series of cast austenitic stainless steels by 50% and upper use temperature by 86 to 140 F (30 to 60 C). Meeting this goal is expected to result in energy savings of 38 trillion Btu/year by 2020 and energy cost savings of $185 million/year. The higher strength H-Series of cast stainless steels (HK and HP type) have applications for the production of ethylene in the chemical industry, for radiant burner tubes and transfer rolls for secondary processing of steel in the steel industry, and for many applications in the heat-treating industry. The project was led by Duraloy Technologies, Inc. with research participation by the Oak Ridge National Laboratory (ORNL) and industrial participation by a diverse group of companies. Energy Industries of Ohio (EIO) was also a partner in this project. Each team partner had well-defined roles. Duraloy Technologies led the team by identifying the base alloys that were to be improved from this research. Duraloy Technologies also provided an extensive creep data base on current alloys, provided creep-tested specimens of certain commercial alloys, and carried out centrifugal casting and component fabrication of newly designed alloys. Nucor Steel …
Date: April 15, 2006
Creator: Muralidharan, G.; Sikka, V. K. & Pankiw, R. I.
Object Type: Report
System: The UNT Digital Library
Revealing Charge Density Wave Formation in the LaTe2 System byAngle Resolved Photoemission Spectroscopy (open access)

Revealing Charge Density Wave Formation in the LaTe2 System byAngle Resolved Photoemission Spectroscopy

We present the first direct study of charge density wave(CDW) formation in quasi-2D single layer LaTe2 using high-resolutionangle resolved photoemission spectroscopy (ARPES) and low energy electrondiffraction (LEED). CDW formation is driven by Fermi surface (FS)nesting, however characterized by a surprisingly smaller gap (~;50 meV)than seen in the double layer RTe3 compounds, extending over the entireFS. This establishes LaTe2 as the first reported semiconducting 2D CDWsystem where the CDW phase is FS nesting driven. In addition, the layerdependence of this phase in the tellurides and the possible transitionfrom a stripe to a checkerboard phase is discussed.
Date: November 15, 2006
Creator: Garcia, D. R.; Gweon, G.-H.; Zhou, S. Y.; Graf, J.; Jozwiak, C. M.; Jung, M. H. et al.
Object Type: Article
System: The UNT Digital Library
Addressing an Uncertain Future Using Scenario Analysis (open access)

Addressing an Uncertain Future Using Scenario Analysis

The Office of Energy Efficiency and Renewable Energy (EERE) has had a longstanding goal of introducing uncertainty into the analysis it routinely conducts in compliance with the Government Performance and Results Act (GPRA) and for strategic management purposes. The need to introduce some treatment of uncertainty arises both because it would be good general management practice, and because intuitively many of the technologies under development by EERE have a considerable advantage in an uncertain world. For example, an expected kWh output from a wind generator in a future year, which is not exposed to volatile and unpredictable fuel prices, should be truly worth more than an equivalent kWh from an alternative fossil fuel fired technology. Indeed, analysts have attempted to measure this value by comparing the prices observed in fixed-price natural gas contracts compared to ones in which buyers are exposed to market prices (see Bolinger, Wiser, and Golove and (2004)). In addition to the routine reasons for exploring uncertainty given above, the history of energy markets appears to have exhibited infrequent, but troubling, regime shifts, i.e., historic turning points at which the center of gravity or fundamental nature of the system appears to have abruptly shifted. Figure 1 below …
Date: December 15, 2006
Creator: Siddiqui, Afzal S. & Marnay, Chris
Object Type: Report
System: The UNT Digital Library
SIMULATION AND ANALYSIS OF MICROWAVE TRANSMISSION THROUGH ANELECTRON CLOUD, A COMPARISON OF RESULTS (open access)

SIMULATION AND ANALYSIS OF MICROWAVE TRANSMISSION THROUGH ANELECTRON CLOUD, A COMPARISON OF RESULTS

Simulation studies for transmission of microwaves through electron clouds show good agreement with analytic results. The electron cloud produces a shift in phase of the microwave. Experimental observation of this phenomena would lead to a useful diagnostic tool for accessing the local density of electron clouds in an accelerator. These experiments are being carried out at the CERN SPS and the PEP-II LER at SLAC and is proposed to be done at the Fermilab main injector. In this study, a brief analysis of the phase shift is provided and the results are compared with that obtained from simulations.
Date: April 15, 2006
Creator: Sonnad, Kiran G.; Furman, Miguel; Veitzer, Seth A. & Cary, John
Object Type: Article
System: The UNT Digital Library
The Fire Information Engine: A web-based toolkit for wildfire-related needs (open access)

The Fire Information Engine: A web-based toolkit for wildfire-related needs

None
Date: June 15, 2006
Creator: Kearns, F; Goldstein, N C; Pedersen, B & Moritz, M A
Object Type: Article
System: The UNT Digital Library
CH-TRU Waste Content Codes (CH-TRUCON) (open access)

CH-TRU Waste Content Codes (CH-TRUCON)

The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 …
Date: August 15, 2006
Creator: Westinghouse TRU Solutions LLC
Object Type: Report
System: The UNT Digital Library