Next Generation Bipolar Plates for Automotive PEM Fuel Cells (open access)

Next Generation Bipolar Plates for Automotive PEM Fuel Cells

The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into …
Date: April 15, 2010
Creator: Adrianowycz, Orest; Norley, Julian; Stuart, David J.; Flaherty, David; Wayne, Ryan; Williams, Warren et al.
Object Type: Report
System: The UNT Digital Library
Helium measurements of pore-fluids obtained from SAFOD drillcore (open access)

Helium measurements of pore-fluids obtained from SAFOD drillcore

{sup 4}He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk {sup 4}He diffusion coefficient of 3.5 {+-} 1.3 x 10{sup -8} cm{sup 2}s{sup -1} at 21 C, compared to previously published diffusion coefficients of 1.2 x 10{sup -18} cm{sup 2}s{sup -1} (21 C) to 3.0 x 10{sup -15} cm{sup 2}s{sup -1} (150 C) in the sands and clays. Correcting the diffusion coefficient of {sup 4}He{sub water} for matrix porosity ({approx}3%) and tortuosity ({approx}6-13) produces effective diffusion coefficients of 1 x 10{sup -8} cm{sup 2}s{sup -1} (21 C) and 1 x 10{sup -7} (120 C), effectively isolating pore fluid {sup 4}He from the {sup 4}He contained in the rock matrix. Model calculations indicate that <6% of helium initially …
Date: April 15, 2010
Creator: Ali, S.; Stute, M.; Torgersen, T.; Winckler, G. & Kennedy, B.M.
Object Type: Article
System: The UNT Digital Library
Muon-induced backgrounds in the CUORICINO experiment (open access)

Muon-induced backgrounds in the CUORICINO experiment

To better understand the contribution of cosmic ray muons to the CUORICINO background, ten plastic scintillator detectors were installed at the CUORICINO siteand operated during the final 3 months of the experiment. From these measurements, an upper limit of 0.0021 counts/(keV.kg.yr) (95percent c.l.) was obtained on the cosmicray induced background in the neutrinoless double beta decay region of interest. The measurements were also compared to Geant4 simulations.
Date: April 15, 2010
Creator: Andreotti, E.; Arnaboldi, C.; Avignone, F. T. III; Balata, M.; Bandac, I.; Barucci, M. et al.
Object Type: Article
System: The UNT Digital Library
Natural convection in tunnels at Yucca Mountain and impact on drift seepage (open access)

Natural convection in tunnels at Yucca Mountain and impact on drift seepage

The decay heat from radioactive waste that is to be disposed in the once proposed geologic repository at Yucca Mountain (YM) will significantly influence the moisture conditions in the fractured rock near emplacement tunnels (drifts). Additionally, large-scale convective cells will form in the open-air drifts and will serve as an important mechanism for the transport of vaporized pore water from the fractured rock in the drift center to the drift end. Such convective processes would also impact drift seepage, as evaporation could reduce the build up of liquid water at the tunnel wall. Characterizing and understanding these liquid water and vapor transport processes is critical for evaluating the performance of the repository, in terms of water-induced canister corrosion and subsequent radionuclide containment. To study such processes, we previously developed and applied an enhanced version of TOUGH2 that solves for natural convection in the drift. We then used the results from this previous study as a time-dependent boundary condition in a high-resolution seepage model, allowing for a computationally efficient means for simulating these processes. The results from the seepage model show that cases with strong natural convection effects are expected to improve the performance of the repository, since smaller relative humidity …
Date: April 15, 2010
Creator: Halecky, N.; Birkholzer, J.T. & Peterson, P.
Object Type: Article
System: The UNT Digital Library
Characterizing Hydrogen Storage Media: Understanding the Interior Pore Structure of a Cu3BTC2 Metal-Organic Framework Infiltrated with NaAlH4 (open access)

Characterizing Hydrogen Storage Media: Understanding the Interior Pore Structure of a Cu3BTC2 Metal-Organic Framework Infiltrated with NaAlH4

Preliminary results support the nano-confinement of sodium alanate within the pores of a Cu{sub 3}BTC{sub 2} MOF substrate. Increased {sup 1}H and {sup 27}Al NMR T{sub 1} relaxation rates indicate a close proximity of infiltrated sodium alante to the paramagnetic Cu{sup 2+} ions on the BTC paddlewheel units. This is in support of the theory that an interaction due to the electronegative framework with the sodium alanate facilitates thermodynamically-favorable hydrogen adsorption and desorption. Further studies can elucidate the local electronic environment of the sodium ions, further supporting a charge-transfer mechanism as the driving force for thermodynamically-favorable hydrogen adsorption and desorption.
Date: April 15, 2010
Creator: Kirmiz, A; Bhakta, R K; Allendorf, M D; Majzoub, E H; Behrens, R & Herberg, J
Object Type: Article
System: The UNT Digital Library
Numerical errors in the presence of steep topography: analysis and alternatives (open access)

Numerical errors in the presence of steep topography: analysis and alternatives

It is well known in computational fluid dynamics that grid quality affects the accuracy of numerical solutions. When assessing grid quality, properties such as aspect ratio, orthogonality of coordinate surfaces, and cell volume are considered. Mesoscale atmospheric models generally use terrain-following coordinates with large aspect ratios near the surface. As high resolution numerical simulations are increasingly used to study topographically forced flows, a high degree of non-orthogonality is introduced, especially in the vicinity of steep terrain slopes. Numerical errors associated with the use of terrainfollowing coordinates can adversely effect the accuracy of the solution in steep terrain. Inaccuracies from the coordinate transformation are present in each spatially discretized term of the Navier-Stokes equations, as well as in the conservation equations for scalars. In particular, errors in the computation of horizontal pressure gradients, diffusion, and horizontal advection terms have been noted in the presence of sloping coordinate surfaces and steep topography. In this work we study the effects of these spatial discretization errors on the flow solution for three canonical cases: scalar advection over a mountain, an atmosphere at rest over a hill, and forced advection over a hill. This study is completed using the Weather Research and Forecasting (WRF) model. …
Date: April 15, 2010
Creator: Lundquist, K A; Chow, F K & Lundquist, J K
Object Type: Article
System: The UNT Digital Library
DROP TESTS RESULTS OF REVISED CLOSURE BOLT CONFIGURATION OF THE STANDARD WASTE BOX, STANDARD LARGE BOX 2, AND TEN DRUM OVERPACK PACKAGINGS (open access)

DROP TESTS RESULTS OF REVISED CLOSURE BOLT CONFIGURATION OF THE STANDARD WASTE BOX, STANDARD LARGE BOX 2, AND TEN DRUM OVERPACK PACKAGINGS

The Transuranic (TRU) Disposition Project at Savannah River Site will require numerous transfers of radioactive materials within the site boundaries for sorting and repackaging. The three DOT Type A shipping packagings planned for this work have numerous bolts for securing the lids to the body of the packagings. In an effort to reduce operator time to open and close the packages during onsite transfers, thus reducing personnel exposure and costs, an evaluation was performed to analyze the effects of reducing the number of bolts required to secure the lid to the packaging body. The evaluation showed the reduction to one-third of the original number of bolts had no effect on the packagings capability to sustain vibratory loads, shipping loads, internal pressure loads, and the loads resulting from a 4-ft drop. However, the loads caused by the 4-ft drop are difficult to estimate and the study recommended each of the packages be dropped to show the actual effects on the package closure. Even with reduced bolting, the packagings were still required to meet the 49 CFR 178.350 performance criteria for Type A packaging. This paper discusses the effects and results of the drop testing of the three packagings.
Date: April 15, 2010
Creator: May, C.; Opperman, E. & Mckeel, C.
Object Type: Article
System: The UNT Digital Library
Black carbon aerosols and the third polar ice cap (open access)

Black carbon aerosols and the third polar ice cap

Recent thinning of glaciers over the Himalayas (sometimes referred to as the third polar region) have raised concern on future water supplies since these glaciers supply water to large river systems that support millions of people inhabiting the surrounding areas. Black carbon (BC) aerosols, released from incomplete combustion, have been increasingly implicated as causing large changes in the hydrology and radiative forcing over Asia and its deposition on snow is thought to increase snow melt. In India BC emissions from biofuel combustion is highly prevalent and compared to other regions, BC aerosol amounts are high. Here, we quantify the impact of BC aerosols on snow cover and precipitation from 1990 to 2010 over the Indian subcontinental region using two different BC emission inventories. New estimates indicate that Indian BC emissions from coal and biofuel are large and transport is expected to expand rapidly in coming years. We show that over the Himalayas, from 1990 to 2000, simulated snow/ice cover decreases by {approx}0.9% due to aerosols. The contribution of the enhanced Indian BC to this decline is {approx}36%, similar to that simulated for 2000 to 2010. Spatial patterns of modeled changes in snow cover and precipitation are similar to observations (from …
Date: April 15, 2010
Creator: Menon, Surabi; Koch, Dorothy; Beig, Gufran; Sahu, Saroj; Fasullo, John & Orlikowski, Daniel
Object Type: Article
System: The UNT Digital Library
Plasmons in strongly coupled shock-compressed matter (open access)

Plasmons in strongly coupled shock-compressed matter

We present the first measurements of the plasmon dispersion and damping in laser shock-compressed solid matter. Petawatt laser produced K-{alpha} radiation scatters on boron targets compressed by a 10 ns-long 400 J laser pulse. In the vicinity of the Fermi momentum, the scattering spectra show dispersionless, collisionally damped plasmons, indicating a strongly coupled electron liquid. These observations agree with x-ray scattering calculations that include both the Born-Mermin approximation to account for electron-ion collisional damping and local field corrections reflecting electron-electron correlations.
Date: April 15, 2010
Creator: Neumayer, P.; Fortmann, C.; Doppner, T.; Davis, P.; Falcone, R. W.; Kritcher, A. L. et al.
Object Type: Article
System: The UNT Digital Library
Award Nomination Information for LLNL - SkillSoft Perspectives Conference, May 2010 (open access)

Award Nomination Information for LLNL - SkillSoft Perspectives Conference, May 2010

None
Date: April 15, 2010
Creator: Positeri, L A; Molyneaux, B & Morley, M
Object Type: Article
System: The UNT Digital Library