Use of relativistic electron beams for the study of chemical and rare gas laser systems (open access)

Use of relativistic electron beams for the study of chemical and rare gas laser systems

None
Date: March 12, 1974
Creator: Krawetz, B.
System: The UNT Digital Library
Laser Ion Acceleration from the Interaction of Ultra-Intense laser Pulse with thi foils (open access)

Laser Ion Acceleration from the Interaction of Ultra-Intense laser Pulse with thi foils

The discovery that ultra-intense laser pulses (I > 10{sup 18} W/cm{sup 2}) can produce short pulse, high energy proton beams has renewed interest in the fundamental mechanisms that govern particle acceleration from laser-solid interactions. Experiments have shown that protons present as hydrocarbon contaminants on laser targets can be accelerated up to energies > 50 MeV. Different theoretical models that explain the observed results have been proposed. One model describes a front-surface acceleration mechanism based on the ponderomotive potential of the laser pulse. At high intensities (I > 10{sup 18} W/cm{sup 2}), the quiver energy of an electron oscillating in the electric field of the laser pulse exceeds the electron rest mass, requiring the consideration of relativistic effects. The relativistically correct ponderomotive potential is given by U{sub p} = ([1 + I{lambda}{sup 2}/1.3 x 10{sup 18}]{sup 1/2} - 1) m{sub o}c{sup 2}, where I{lambda}{sup 2} is the irradiance in W{micro}m{sup 2}/cm{sup 2} and m{sub o}c{sup 2} is the electron rest mass.At laser irradiance of I{lambda}{sup 2} {approx} 10{sup 20} W{micro}m{sup 2}/cm{sup 2}, the ponderomotive potential can be of order several MeV. A few recent experiments--discussed in Chapter 3 of this thesis--consider this ponderomotive potential sufficiently strong to accelerate protons from the …
Date: March 12, 2004
Creator: Allen, M
System: The UNT Digital Library