Final Report (open access)

Final Report

The overall objective is to create robust artificial protein modules as scaffolds to control both (a) the conformation of novel cofactors incorporated into the modules thereby making the modules possess a desired functionality and (b) the organization of these functional modules into ordered macroscopic ensembles, whose macroscopic materials properties derive from the designed microscopic function of the modules. We focus on two specific types of cofactors for imparting functionality in this project; primarily nonlinear optical (NLO) chromophores designed to exhibit extraordinary molecular hyperpolarizabilities, as well as donor-bridge-acceptor cofactors designed to exhibit highly efficient, 'through-bonds' light-induced electron transfer (LIET) over nano-scale distances. The ensembles range from 2-D to 3-D, designed to possess the degree of orientational and positional order necessary to optimize their macroscopic response, the latter ranging from liquid-crystalline or glass-like to long-range periodic. Computational techniques, firmly based in statistical thermodynamics, are utilized for the design the artificial protein modules, based on robust {alpha}-helical bundle motifs, necessarily incorporating the desired conformation, location, and environment of the cofactor. Importantly, this design approach also includes optimization of the interactions between the modules to promote their organization into ordered macroscopic ensembles in 2-D and 3-D via either directed-assembly or self-assembly. When long-range periodic …
Date: May 24, 2012
Creator: Blasie, J. K.; DeGrado, W.F.; Saven, J.G. & Therien, M.J.
Object Type: Report
System: The UNT Digital Library
FINAL TECHNICAL REPORT (open access)

FINAL TECHNICAL REPORT

The United States has abundant wind resources, such that only about 3% of the resource would need to be developed to achieve the goal of producing 20% of electricity in the United States by 2030. Inappropriately sited wind development may result in conflicts with wildlife that can delay or derail development projects, increase projects costs, and may degrade important conservation values. The most cost-effective approach to reducing such conflicts is through landscape-scale siting early in project development. To support landscape scale siting that avoids sensitive areas for wildlife, we compiled a database on species distributions, wind resource, disturbed areas, and land ownership. This database can be viewed and obtained via http://wind.tnc.org/awwi. Wind project developers can use this web tool to identify potentially sensitive areas and areas that are already disturbed and are therefore likely to be less sensitive to additional impacts from wind development. The United States goal of producing 20% of its electricity from wind energy by the year 2030 would require 241 GW of terrestrial nameplate capacity. We analyzed whether this goal could be met by using lands that are already disturbed, which would minimize impacts to wildlife. Our research shows that over 14 times the DOE goal …
Date: February 24, 2012
Creator: Fargione, Joseph
Object Type: Report
System: The UNT Digital Library
Dielectric-Lined High-Gradient Accelerator Structure (open access)

Dielectric-Lined High-Gradient Accelerator Structure

Rectangular particle accelerator structures with internal planar dielectric elements have been studied, with a view towards devising structures with lower surface fields for a given accelerating field, as compared with structures without dielectrics. Success with this concept is expected to allow operation at higher accelerating gradients than otherwise on account of reduced breakdown probabilities. The project involves studies of RF breakdown on amorphous dielectrics in test cavities that could enable high-gradient structures to be built for a future multi-TeV collider. The aim is to determine what the limits are for RF fields at the surfaces of selected dielectrics, and the resulting acceleration gradient that could be achieved in a working structure. The dielectric of principal interest in this study is artificial CVD diamond, on account of its advertised high breakdown field ({approx}2 GV/m for dc), low loss tangent, and high thermal conductivity. Experimental studies at mm-wavelengths on materials and structures for achieving high acceleration gradient were based on the availability of the 34.3 GHz third-harmonic magnicon amplifier developed by Omega-P, and installed at the Yale University Beam Physics Laboratory. Peak power from the magnicon was measured to be about 20 MW in 0.5 {micro}s pulses, with a gain of 54 …
Date: April 24, 2012
Creator: Hirshfield, Jay L.
Object Type: Report
System: The UNT Digital Library
Report on subcontract from Lawrence Livermore National Lab, "Development of Large-Dimension Configuration-Interaction Shell-Model Code" (open access)

Report on subcontract from Lawrence Livermore National Lab, "Development of Large-Dimension Configuration-Interaction Shell-Model Code"

The project period was devoted to several developments in the technical capabilities of the BIGSTIC large-dimension configuration-interaction shell-model code, written in Fortran 90. The specific computational goals for the project period were: (1) store Lanczos vectors on core in RAM to minimize I/O; (2) rewrite reorthogonalization with Lanczos vectors stored in core, consult with personnel at LLNL, LBL, ORNL, Iowa State University to maximize performance; (3) restrict creation of N-body jumps to those needed by an individual node; and (4) distribute 3-body interaction over many cores. Significant progress was made towards these goals, especially (1) and (2), although in the process they discovered intermediate tasks that had to be accomplished first. The achievements were as follows - I put into place structures and algorithms to facility fragmenting very large-dimension Lanczos intermediate vectors. Only by fragmenting the vectors can we carry out (1) and (2). In addition, I reorganized the action of the Hamiltonian matrix and created a new division of operations for MPI. Based upon earlier work, I made plans of a revised algorithm for distribution of work with MPI, with a particular eye towards breaking up the Lanczos vectors. I introduce a new derived type (opbundles) which collects the …
Date: January 24, 2012
Creator: Johnson, C W
Object Type: Report
System: The UNT Digital Library
ENHANCED SAFEGUARDS: THE ROLE OF SMART FUNCTIONAL COATINGS FOR TAMPER INDICATION (open access)

ENHANCED SAFEGUARDS: THE ROLE OF SMART FUNCTIONAL COATINGS FOR TAMPER INDICATION

This work investigates the synthesis of smart functional coatings (SFC) using chemical solution deposition methods. Chemical solution deposition methods have recently received attention in the materials research community due to several unique advantages that include low temperature processing, high homogeneity of final products, the ability to fabricate materials with controlled surface properties and pore structures, and the ease of dopant incorporation in controlled concentrations. The optical properties of thin films were investigated using UV-Vis spectroscopy, Raman, SEM and EDS, with the aim of developing a protective transparent coating for a ceramic surface as a first line of defense for tamper indication. The signature produced by the addition of rare earth dopants will be employed as an additional tamper indicating feature. The integration of SFC's as part of a broader verification system such as an electronic seals can provide additional functionality and defense in depth. SFC's can improve the timeliness of detection by providing a robust, in-situ verifiable tamper indication framework.
Date: February 24, 2012
Creator: Mendez-Torres, A.; Martinez-Rodriguez, M.; Brinkman, K. & Krementz, D.
Object Type: Article
System: The UNT Digital Library
Energy Reductions Using Next-Generation Remanufacturing Techniques (open access)

Energy Reductions Using Next-Generation Remanufacturing Techniques

The goal of this project was to develop a radically new surface coating approach that greatly enhances the performance of thermal spray coatings. Rather than relying on a roughened grit blasted substrate surface for developing a mechanical bond between the coating and substrate, which is the normal practice with conventional thermal spraying, a hybrid approach of combining a focused laser beam to thermally treat the substrate surface in the vicinity of the rapidly approaching thermally-sprayed powder particles was developed. This new surface coating process is targeted primarily at enabling remanufacturing of components used in engines, drive trains and undercarriage systems; thereby providing a substantial global opportunity for increasing the magnitude and breadth of parts that are remanufactured through their life cycle, as opposed to simply being replaced by new components. The projected benefits of a new remanufacturing process that increases the quantity of components that are salvaged and reused compared to being fabricated from raw materials will clearly vary based on the specific industry and range of candidate components that are considered. At the outset of this project two different metal processing routes were considered, castings and forgings, and the prototypical components for each process were liners and crankshafts, respectively. …
Date: February 24, 2012
Creator: Sordelet, Daniel & Racek, Ondrej
Object Type: Report
System: The UNT Digital Library
FINAL TECHNICAL REPORT FOR FORESTRY BIOFUEL STATEWIDE COLLABORATION CENTER (MICHIGAN) (open access)

FINAL TECHNICAL REPORT FOR FORESTRY BIOFUEL STATEWIDE COLLABORATION CENTER (MICHIGAN)

A team composed of scientists from Michigan State University (MSU) and Michigan Technological University (MTU) assembled to better understand, document, and improve systems for using forest-based biomass feedstocks in the production of energy products within Michigan. Work was funded by a grant (DE-EE-0000280) from the U.S. Department of Energy (DOE) and was administered by the Michigan Economic Development Corporation (MEDC). The goal of the project was to improve the forest feedstock supply infrastructure to sustainably provide woody biomass for biofuel production in Michigan over the long-term. Work was divided into four broad areas with associated objectives: • TASK A: Develop a Forest-Based Biomass Assessment for Michigan – Define forest-based feedstock inventory, availability, and the potential of forest-based feedstock to support state and federal renewable energy goals while maintaining current uses. • TASK B: Improve Harvesting, Processing and Transportation Systems – Identify and develop cost, energy, and carbon efficient harvesting, processing and transportation systems. • TASK C: Improve Forest Feedstock Productivity and Sustainability – Identify and develop sustainable feedstock production systems through the establishment and monitoring of a statewide network of field trials in forests and energy plantations. • TASK D: Engage Stakeholders – Increase understanding of forest biomass production systems …
Date: April 24, 2012
Creator: LaCourt, Donna M.; Miller, Raymond O. & Shonnard, David R.
Object Type: Report
System: The UNT Digital Library
Prompt Neutron Lifetime for the NBSR Reactor (open access)

Prompt Neutron Lifetime for the NBSR Reactor

In preparation for the proposed conversion of the National Institute of Standards and Technology (NIST) research reactor (NBSR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel, certain point kinetics parameters must be calculated. We report here values of the prompt neutron lifetime that have been calculated using three independent methods. All three sets of calculations demonstrate that the prompt neutron lifetime is shorter for the LEU fuel when compared to the HEU fuel and longer for the equilibrium end-of-cycle (EOC) condition when compared to the equilibrium startup (SU) condition for both the HEU and LEU fuels.
Date: June 24, 2012
Creator: Hanson, A. L. & Diamond, D.
Object Type: Article
System: The UNT Digital Library
TORUS: Theory of Reactions for Unstable iSotopes Annual Continuation and Progress Report Year-2: March 1, 2011 - February 29, 2012 (open access)

TORUS: Theory of Reactions for Unstable iSotopes Annual Continuation and Progress Report Year-2: March 1, 2011 - February 29, 2012

The TORUS collaboration derives its name from the research it focuses on, namely the Theory of Reactions for Unstable iSotopes. It is a Topical Collaboration in Nuclear Theory, and funded by the Nuclear Theory Division of the Office of Nuclear Physics in the Office of Science of the Department of Energy. The funding supports one postdoctoral researcher for the years 1 through 3. The collaboration brings together as Principal Investigators a large fraction of the nuclear reaction theorists currently active within the USA. The mission of the TORUS Topical Collaboration is to develop new methods that will advance nuclear reaction theory for unstable isotopes by using three-body techniques to improve direct-reaction calculations, and, by using a new partial-fusion theory, to integrate descriptions of direct and compound-nucleus reactions. This multi-institution collaborative effort is directly relevant to three areas of interest: the properties of nuclei far from stability; microscopic studies of nuclear input parameters for astrophysics, and microscopic nuclear reaction theory.
Date: February 24, 2012
Creator: Arbanas, Goran; Elster, Charlotte; Escher, Jutta; Mukhamedzanov, Akram; Nunes, Filomena & Thompson, Ian J.
Object Type: Report
System: The UNT Digital Library
Climate Change Science White Paper (open access)

Climate Change Science White Paper

This is a white paper on climate change science. The white paper seeks to create a consensus around science-based evidence on climate change and increasing overall temperatures.
Date: July 24, 2012
Creator: United States. Department of Agriculture. Research, Education and Economics.
Object Type: Paper
System: The UNT Digital Library