Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas (open access)

Using the X-FEL to understand X-ray Thomson scattering for partially ionized plasmas

None
Date: July 16, 2012
Creator: Nilsen, J; Johnson, W R & Cheng, K T
System: The UNT Digital Library
A Non-Invasive Energy/Angle Diagnostic for Charged Particle Beams (open access)

A Non-Invasive Energy/Angle Diagnostic for Charged Particle Beams

A diagnostic for charged particle beams based on Compton scattering is presented. The particular case of an electron beam is treated in detail relativistically.
Date: March 16, 2012
Creator: Christensen, C. R.
System: The UNT Digital Library
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement (open access)

2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
Date: August 16, 2012
Creator: Anber, Mohamed M.; Poppitz, Erich; U., /Toronto; Unsal, Mithat & /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
System: The UNT Digital Library
A Fisheye Lens as a Photonic Doppler Velocimetry Probe (open access)

A Fisheye Lens as a Photonic Doppler Velocimetry Probe

These presentation visuals report an instrument that, by use of a fish-eye lens, generates a beat signal using fiber mixing of unshifted light with Doppler-shifted light and measures the beat frequency. Ray trace diagrams are shown to illustrate advantages and disadvantages. The authors find their instrument has a long tracking distance, and large angle coverage. Index matching eases assembly, reduces return loss and flattens the field.
Date: August 16, 2012
Creator: Frogget, B. C.
System: The UNT Digital Library
Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident (open access)

Aerial Radiation Measurements from the Fukushima Dai-ichi Nuclear Power Plant Accident

This document is a slide show type presentation concerning DOE and Aerial Measuring System (AMS) activities and results with respect to assessing the consequences of the releases from the Fukushima Dai-ichi Nuclear Power Plant. These include ground monitoring and aerial monitoring.
Date: July 16, 2012
Creator: Guss, P. P.
System: The UNT Digital Library
Search for Dark Matter Satellites Using the FERMI-LAT (open access)

Search for Dark Matter Satellites Using the FERMI-LAT

Numerical simulations based on the {Lambda}CDM model of cosmology predict a large number of as yet unobserved Galactic dark matter satellites. We report the results of a Large Area Telescope (LAT) search for these satellites via the {gamma}-ray emission expected from the annihilation of weakly interacting massive particle (WIMP) dark matter. Some dark matter satellites are expected to have hard {gamma}-ray spectra, finite angular extents, and a lack of counterparts at other wavelengths. We sought to identify LAT sources with these characteristics, focusing on {gamma}-ray spectra consistent with WIMP annihilation through the b{bar b} channel. We found no viable dark matter satellite candidates using one year of data, and we present a framework for interpreting this result in the context of numerical simulations to constrain the velocity-averaged annihilation cross section for a conventional 100 GeV WIMP annihilating through the b{bar b} channel.
Date: August 16, 2012
Creator: Ackermann, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D. et al.
System: The UNT Digital Library
Particle Energy Spectrum, Revisited from a Counting Statistics Perspective (open access)

Particle Energy Spectrum, Revisited from a Counting Statistics Perspective

This document is a slide show type presentation of a new covariance estimation for gamma spectra and neutron cross section.
Date: July 16, 2012
Creator: Yuan, D., Marks, D. G., Guss, P. P.
System: The UNT Digital Library
Coexistence of Two- and Three-dimensional Shubnikov-de Haas Oscillations in Ar^+ -irradiated KTaO_3 (open access)

Coexistence of Two- and Three-dimensional Shubnikov-de Haas Oscillations in Ar^+ -irradiated KTaO_3

We report the electron doping in the surface vicinity of KTaO{sub 3} by inducing oxygen-vacancies via Ar{sup +}-irradiation. The doped electrons have high mobility (> 10{sup 4} cm{sup 2}/Vs) at low temperatures, and exhibit Shubnikov-de Haas oscillations with both two- and three-dimensional components. A disparity of the extracted in-plane effective mass, compared to the bulk values, suggests mixing of the orbital characters. Our observations demonstrate that Ar{sup +}-irradiation serves as a flexible tool to study low dimensional quantum transport in 5d semiconducting oxides.
Date: May 16, 2012
Creator: Harashima, S.; Bell, C.; Kim, M.; Yajima, T.; Hikita, Y. & Hwang, H.Y.
System: The UNT Digital Library
Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility (open access)

Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metal bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.
Date: March 16, 2012
Creator: Meyers, L. A.; Williams, R. W.; Glover, S. E.; LaMont, S. P.; Stalcup, A. M. & Spitz, H. B.
System: The UNT Digital Library
Final compression beamline systems for heavy ion fusion drivers (open access)

Final compression beamline systems for heavy ion fusion drivers

None
Date: July 16, 2012
Creator: Lau, Y. Y.; Yu, S. S.; Barnard, J. J. & Seidl, P. A.
System: The UNT Digital Library
Testing of CMOS Devices in NIF's Harsh Neutron Environment (open access)

Testing of CMOS Devices in NIF's Harsh Neutron Environment

None
Date: July 16, 2012
Creator: Teruya, A T; Bell, P M; Burns, S; Hagmann, C; Moody, J D & Richardson, M
System: The UNT Digital Library
Soft ionization of thermally evaporated hypergolic ionic liquid aerosols (open access)

Soft ionization of thermally evaporated hypergolic ionic liquid aerosols

Isolated ion pairs of a conventional ionic liquid, 1-Ethyl-3-Methyl-Imidazolium Bis(trifluoromethylsulfonyl)imide ([Emim+][Tf2N?]), and a reactive hypergolic ionic liquid, 1- Butyl-3-Methyl-Imidazolium Dicyanamide ([Bmim+][Dca?]), are generated by vaporizing ionic liquid submicron aerosol particles for the first time; the vaporized species are investigated by dissociative ionization with tunable vacuum ultraviolet (VUV) light, exhibiting clear intact cations, Emim+ and Bmim+, presumably originating from intact ion pairs. Mass spectra of ion pair vapor from an effusive source of the hypergolic ionic liquid show substantial reactive decomposition due to the internal energy of the molecules emanating from the source. Photoionization efficiency curves in the near threshold ionization region of isolated ion pairs of [Emim+][Tf2N?] ionic liquid vapor are compared for an aerosol source and an effusive source, revealing changes in the appearance energy due to the amount of internal energy in the ion pairs. The aerosol source has a shift to higher threshold energy (~;;0.3 eV), attributed to reduced internal energy of the isolated ion pairs. The method of ionic liquid submicron aerosol particle vaporization, for reactive ionic liquids such as hypergolic species, is a convenient, thermally ?cooler? source of isolated intact ion pairs in the gas phase compared to effusive sources.
Date: March 16, 2012
Creator: Koh, Christine J.; Liu, Chen-Lin; Harmon, Christopher W.; Strasser, Daniel; Golan, Amir; Kostko, Oleg et al.
System: The UNT Digital Library
A Radiating Shock Evaluated Using Implicit Monte Carlo Diffusion (open access)

A Radiating Shock Evaluated Using Implicit Monte Carlo Diffusion

None
Date: October 16, 2012
Creator: Cleveland, M. & Gentile, N.
System: The UNT Digital Library
Using Data Mining to Enable Integration of Wind Resources on the Power Grid (open access)

Using Data Mining to Enable Integration of Wind Resources on the Power Grid

None
Date: June 16, 2012
Creator: Kamath, C & Fan, Y J
System: The UNT Digital Library
Identification of L-Shell Transitions in M-shell Iron Ions in the Spectra of Capella and Procyon (open access)

Identification of L-Shell Transitions in M-shell Iron Ions in the Spectra of Capella and Procyon

None
Date: August 16, 2012
Creator: Lepson, J K; Beiersdorfer, P; Brown, G V; Trabert, E; Bode, M P; Desai, P et al.
System: The UNT Digital Library
Conditioning analysis of incomplete Cholesky factorizations with orthogonal dropping (open access)

Conditioning analysis of incomplete Cholesky factorizations with orthogonal dropping

The analysis of preconditioners based on incomplete Cholesky factorization in which the neglected (dropped) components are orthogonal to the approximations being kept is presented. General estimate for the condition number of the preconditioned system is given which only depends on the accuracy of individual approximations. The estimate is further improved if, for instance, only the newly computed rows of the factor are modified during each approximation step. In this latter case it is further shown to be sharp. The analysis is illustrated with some existing factorizations in the context of discretized elliptic partial differential equations.
Date: March 16, 2012
Creator: Napov, Artem
System: The UNT Digital Library
Design and testing of a megapixel CMOS charge dump and read camera (open access)

Design and testing of a megapixel CMOS charge dump and read camera

None
Date: July 16, 2012
Creator: Kimbrough, J. R.; Moody, J. D. & Bell, P. M.
System: The UNT Digital Library
Conference Report High Performance Computing for Policy Formulation - The Benefits and Risks - (open access)

Conference Report High Performance Computing for Policy Formulation - The Benefits and Risks -

None
Date: July 16, 2012
Creator: Rowley, D P
System: The UNT Digital Library
Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets (open access)

Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.
Date: May 16, 2012
Creator: Marsh, R A; Anderson, S G & Armstrong, J P
System: The UNT Digital Library
AdS/QCD, Light-Front Holography, and Sublimated Gluons (open access)

AdS/QCD, Light-Front Holography, and Sublimated Gluons

The gauge/gravity duality leads to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian - 'Light-Front Holography', which provides a Lorentz-invariant first-approximation to QCD, and successfully describes the spectroscopy of light-quark meson and baryons, their elastic and transition form factors, and other hadronic properties. The bound-state Schroedinger and Dirac equations of the soft-wall AdS/QCD model predict linear Regge trajectories which have the same slope in orbital angular momentum L and radial quantum number n for both mesons and baryons. Light-front holography connects the fifth-dimensional coordinate of AdS space z to an invariant impact separation variable {zeta} in 3+1 space at fixed light-front time. A key feature is the determination of the frame-independent light-front wavefunctions of hadrons - the relativistic analogs of the Schroedinger wavefunctions of atomic physics which allow one to compute form factors, transversity distributions, spin properties of the valence quarks, jet hadronization, and other hadronic observables. One thus obtains a one-parameter color-confining model for hadron physics at the amplitude level. AdS/QCD also predicts the form of the non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q) and its {beta}-function with an infrared fixed point which agrees with the effective coupling a{sub g1} (Q{sup 2}) extracted …
Date: February 16, 2012
Creator: Brodsky, Stanley J. & de Teramond, Guy F.
System: The UNT Digital Library
CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT (open access)

CALIBRATION OF X-RAY IMAGING DEVICES FOR ACCURATE INTENSITY MEASUREMENT

National Security Technologies (NSTec) has developed calibration procedures for X-ray imaging systems. The X-ray sources that are used for calibration are both diode type and diode/fluorescer combinations. Calibrating the X-ray detectors is key to accurate calibration of the X-ray sources. Both energy dispersive detectors and photodiodes measuring total flux were used. We have developed calibration techniques for the detectors using radioactive sources that are traceable to the National Institute of Standards and Technology (NIST). The German synchrotron at Physikalische Technische Bundestalt (PTB) is used to calibrate silicon photodiodes over the energy range from 50 eV to 60 keV. The measurements on X-ray cameras made using the NSTec X-ray sources have included quantum efficiency averaged over all pixels, camera counts per photon per pixel, and response variation across the sensor. The instrumentation required to accomplish the calibrations is described. X-ray energies ranged from 720 eV to 22.7 keV. The X-ray sources produce narrow energy bands, allowing us to determine the properties as a function of X-ray energy. The calibrations were done for several types of imaging devices. There were back illuminated and front illuminated CCD (charge coupled device) sensors, and a CID (charge injection device) type camera. The CCD and CID …
Date: February 16, 2012
Creator: Haugh, M. J.; Charest, M. R.; Ross, P. W.; Lee, J. J.; Schneider, M. B.; Palmer, N. E. et al.
System: The UNT Digital Library
Visualization of Target Inspection data at the National Ignition Facility (open access)

Visualization of Target Inspection data at the National Ignition Facility

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.
Date: February 16, 2012
Creator: Potter, D & Antipa, N
System: The UNT Digital Library
Transversity from First Principles in QCD (open access)

Transversity from First Principles in QCD

Transversity observables, such as the T-odd Sivers single-spin asymmetry measured in deep inelastic lepton scattering on polarized protons and the distributions which are measured in deeply virtual Compton scattering, provide important constraints on the fundamental quark and gluon structure of the proton. In this talk I discuss the challenge of computing these observables from first principles; i.e.; quantum chromodynamics, itself. A key step is the determination of the frame-independent light-front wavefunctions (LFWFs) of hadrons - the QCD eigensolutions which are analogs of the Schroedinger wavefunctions of atomic physics. The lensing effects of initial-state and final-state interactions, acting on LFWFs with different orbital angular momentum, lead to T-odd transversity observables such as the Sivers, Collins, and Boer-Mulders distributions. The lensing effect also leads to leading-twist phenomena which break leading-twist factorization such as the breakdown of the Lam-Tung relation in Drell-Yan reactions. A similar rescattering mechanism also leads to diffractive deep inelastic scattering, as well as nuclear shadowing and non-universal antishadowing. It is thus important to distinguish 'static' structure functions, the probability distributions computed the target hadron's light-front wavefunctions, versus 'dynamical' structure functions which include the effects of initial- and final-state rescattering. I also discuss related effects such as the J = …
Date: February 16, 2012
Creator: Brodsky, Stanley J. & /SLAC /Southern Denmark U., CP3-Origins
System: The UNT Digital Library
Scale Setting Using the Extended Re normalization Group and the Principle of Maximal Conformality: the QCD Coupling at Four Loops (open access)

Scale Setting Using the Extended Re normalization Group and the Principle of Maximal Conformality: the QCD Coupling at Four Loops

A key problem in making precise perturbative QCD predictions is to set the proper renormalization scale of the running coupling. The extended renormalization group equations, which express the invariance of physical observables under both the renormalization scale- and scheme-parameter transformations, provide a convenient way for estimating the scale- and scheme-dependence of the physical process. In this paper, we present a solution for the scale-equation of the extended renormalization group equations at the four-loop level. Using the principle of maximum conformality (PMC)/Brodsky-Lepage-Mackenzie (BLM) scale-setting method, all non-conformal {beta}{sub i} terms in the perturbative expansion series can be summed into the running coupling, and the resulting scale-fixed predictions are independent of the renormalization scheme. Different schemes lead to different effective PMC/BLM scales, but the final results are scheme independent. Conversely, from the requirement of scheme independence, one not only can obtain scheme-independent commensurate scale relations among different observables, but also determine the scale displacements among the PMC/BLM scales which are derived under different schemes. In principle, the PMC/BLM scales can be fixed order-by-order, and as a useful reference, we present a systematic and scheme-independent procedure for setting PMC/BLM scales up to NNLO. An explicit application for determining the scale setting of R{sub …
Date: February 16, 2012
Creator: Brodsky, Stanley J. & Wu, Xing-Gang
System: The UNT Digital Library