A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC (open access)

A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC

With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.
Date: January 6, 2012
Creator: Pernet, Pierre-Louis
System: The UNT Digital Library
A Cell-Centered Multiphase ALE Scheme With Structural Coupling (open access)

A Cell-Centered Multiphase ALE Scheme With Structural Coupling

None
Date: January 17, 2012
Creator: Dunn, T. A.
System: The UNT Digital Library
Wide Bandgap Extrinsic Photoconductive Switches (open access)

Wide Bandgap Extrinsic Photoconductive Switches

Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.
Date: January 17, 2012
Creator: Sullivan, J S
System: The UNT Digital Library
Study of CP Violation in Dalitz-Plot Analyses of B-Meson Decays to Three Kaons (open access)

Study of CP Violation in Dalitz-Plot Analyses of B-Meson Decays to Three Kaons

The Standard Model (SM) explains CP violation in terms of the CKM matrix. The BABAR experiment was designed mainly to test the CKM model in B decays. B decays that proceed through b {yields} s loop diagrams, of which B {yields} KKK decays are an example, are sensitive to new physics effects that could lead to deviations from the CKM predictions for CP violation. We present studies of CP violation in the decays B{sup +} {yields} K{sup +}K{sup -}K{sup +}, B{sup +} {yields} K{sub S}{sup 0}K{sub S}{sup 0}K{sup +}, and B{sup 0} {yields} K{sup +}K{sup -}K{sub S}{sup 0}, using a Dalitz plot amplitude analysis. These studies are based on approximately 470 million B{bar B} decays collected by BABAR at the PEP-II collider at SLAC. We perform measurements of time-dependent CP violation in B{sup 0} {yields} K{sup +}K{sup -}K{sub S}{sup 0}, including B{sup 0} {yields} {phi}K{sub S}{sup 0}. We measure a CP-violating phase {beta}{sub eff} ({phi}K{sub S}{sup 0}) = 0.36 {+-} 0.11 {+-} 0.04 rad., in agreement with the SM. This is the world's most precise measurement of this quantity. We also measure direct CP asymmetries in all three decay modes, including the direct CP asymmetry A{sub CP} ({phi}K{sup +}) = …
Date: February 15, 2012
Creator: Lindquist, Brian
System: The UNT Digital Library
Study of charmonium resonances in the gg -> K0SK pi- and gg -> K K-pi pi-pi0 processes (open access)

Study of charmonium resonances in the gg -> K0SK pi- and gg -> K K-pi pi-pi0 processes

This thesis reports the analysis of the e{sup +}e{sup -} {yields} e{sup +}e{sup -}K{sub S}{sup 0}K{sup {+-}}{pi}{sup {-+}} and e{sup +}e{sup -} {yields} e{sup +}e{sup -}K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup 0} processes using the final dataset of the BABAR experiment located at the SLAC National Accelerator Laboratory. From previous measurements, the K{sub S}{sup 0}K{sup {+-}}{pi}{sup {-+}} final state is known to show a clear signal from the {eta}{sub c}(2S) particle. This c{bar c} state escaped detection for almost twenty years and its properties are still not well established on the experimental ground, while accurate predictions exist on the theoretical side. The e{sup +}e{sup -} {yields} e{sup +}e{sup -}K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup 0} process is first studied in this thesis. An accurate determination of the {eta}{sub c}(2S) properties is obtained in the K{sub S}{sup 0}K{sup {+-}}{pi}{sup {-+}} decay mode. We also report the first observation of {eta}{sub c}(2S) and other charmonium states to the K{sup +}K{sup -}{pi}{sup +}{pi}{sup -}{pi}{sup 0} final state. The results of this thesis have been published in Physical Review D, and will be useful to test theoretical models describing the charmonium system. The thesis is organized in four chapters. The first one gives a brief introduction …
Date: February 22, 2012
Creator: Biassoni, Pietro & /U. Milan, Dept. Phys.
System: The UNT Digital Library
Rhodium mediated bond activation: from synthesis to catalysis (open access)

Rhodium mediated bond activation: from synthesis to catalysis

Recently, our lab has developed monoanionic tridentate ligand, To{sup R}, showing the corresponding coordination chemistry and catalyst reactivity of magnesium, zirconium, zinc and iridium complexes. This thesis details synthetic chemistry, structural study and catalytic reactivity of the To{sup R}-supported rhodium compounds. Tl[To{sup R}] has been proved to be a superior ligand transfer agent for synthesizing rhodium complexes. The salt metathesis route of Tl[To{sup M}] with [Rh({mu}-Cl)(CO)]{sub 2} and [Rh({mu}- Cl)(COE)]{sub 2} gives To{sup M}Rh(CO){sub 2} (2.2) and To{sup M}RhH({eta}{sup 3}-C{sub 8}H{sub 13}) (3.1) respectively while Tl[To{sup P}] with [Rh({mu}-Cl)(CO)]{sub 2} affords To{sup P}Rh(CO){sub 2} (2.3). 2.2 reacts with both strong and weak electrophiles, resulting in the oxazoline N-attacked and the metal center-attacked compounds correspondingly. Using one of the metal center-attacked electrophiles, 2.3 was demonstrated to give high diastereoselectivity. Parallel to COE allylic C-H activation complex 3.1, the propene and allylbenzene allylic C-H activation products have also been synthesized. The subsequent functionalization attempts have been examined by treating with Brønsted acids, Lewis acids, electrophiles, nucleophiles, 1,3-dipolar reagents and reagents containing multiple bonds able to be inserted. Various related complexes have been obtained under these conditions, in which one of the azide insertion compounds reductively eliminates to give an allylic functionalization product …
Date: March 6, 2012
Creator: Ho, Hung-An
System: The UNT Digital Library
Measurement of the D_s Decay Constant f_Ds and Observation of New Charm Resonances Decaying to D^(*)\pi (open access)

Measurement of the D_s Decay Constant f_Ds and Observation of New Charm Resonances Decaying to D^(*)\pi

The absolute branching fractions for the decays D{sub s}{sup -} {yields} {ell}{sup -}{bar {nu}}{sub {ell}} ({ell} = e, {mu}, or {tau}) are measured using a data sample corresponding to an integrated luminosity of 521 fb{sup -1} collected at center of mass energies near 10.58 GeV with the BABAR detector at the PEPII e{sup +}e{sup -} collider at SLAC. The number of D{sub s}{sup -} mesons is determined by reconstructing the recoiling system DKX{gamma} in events of the type e{sup +}e{sup -} {yields} DKXD*{sub s}{sup -}, where D*{sub s}{sup -} {yields} D{sub s}{sup -} {gamma} and X represents additional pions from fragmentation. The D{sub s}{sup -} {yields} {ell}{sup -}{nu}{sub {ell}} events are detected by full or partial reconstruction of the recoiling system DKX{gamma}{ell}. The following results are obtained: {Beta}(D{sub s}{sup -} {yields} {mu}{sup -}{nu}) = (6.02 {+-} 0.38 {+-} 0.34) x 10{sup -3}, {Beta}(D{sub s}{sup -} {yields} {tau}{sup -}{nu}) = (5.00 {+-} 0.35 {+-} 0.49) x 10{sup -2}, and B(D{sub s}{sup -} {yields} e{sup -}{nu}) < 2.8 x 10{sup -4} at 90% C.L., where the first uncertainty is statistical and the second is systematic. The branching fraction measurements are combined to determine the D{sub s}{sup -} decay constant f{sub D{sub s}} …
Date: March 15, 2012
Creator: Benitez, Jose
System: The UNT Digital Library
Energy Spread Reduction of Electron Beams Produced via Laser Wake (open access)

Energy Spread Reduction of Electron Beams Produced via Laser Wake

Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x …
Date: March 19, 2012
Creator: Pollock, B.
System: The UNT Digital Library
First observation of the Charmless Decay B to K pi0pi0 and Study of its Dalitz Plot Structure (open access)

First observation of the Charmless Decay B to K pi0pi0 and Study of its Dalitz Plot Structure

Results for the first measurement of the inclusive branching and CP asymmetry of the charmless 3-body decay B{sup +} {yields} K{sup +}{pi}{sup 0}{pi}{sup 0} are presented. The analysis uses a data sample with an integrated luminosity of 429.0 fb{sup -1}, recorded by the BABAR detector at the PEP-II asymmetric B Factory. This sample corresponds to 470.9 {+-} 2.8 million B{bar B} pairs. Measurements of the branching fractions (B) and CP asymmetries (A{sub CP}) of some of the intermediate resonances in the K{sup +}{pi}{sup 0}{pi}{sup 0} Dalitz plot are also presented.
Date: March 21, 2012
Creator: Puccio, Eugenia Maria Teresa Irene & /SLAC, /Warwick U.
System: The UNT Digital Library
Investigation of high-precision {Lambda} hypernuclear spectroscopy via the (e,e'K{sup +}) reaction (open access)

Investigation of high-precision {Lambda} hypernuclear spectroscopy via the (e,e'K{sup +}) reaction

The study of {Lambda} hypernuclear structure is very interesting in point of the understanding of the interaction between {Lambda} and nucleon ({Lambda}-N interaction) and its ”strange” structure itself due to the containment of a {Lambda} hyperon which has a strangeness as a new degree of freedom. In the several way to study the Lamda hypernuclei, the (e,e'K{sup +}) reaction spectroscopy is a powerful tool for the precise investigation of {Lamda} hypernuclear structure. The purpose of the preset thesis is the establishment of the experimental design with the efficient data analysis method for the (e,e'K{sup +}) hypernuclear spectroscopic experiment in the wide mass region (from A=7 to A=52). It is very challenging to perform the (e,e'K{sup +}) spectroscopic experiment with such a heavy target, because of the huge electron background due to the bremsstrahlung process. In the experiment, it is required to obtain the necessary hypernuclear yield, suppressing the background event ratio. We achieved these requirements by newly constructing the high resolution electron spectrometer (HES) and splitter magnet (SPL) dedicated to the (e,e'K{sup +}) spectroscopic experiment. The HES consists of two quadrupole magnets and a dipole magnets (Q-Q-D) with a momentum resolution of dp/p = 3x10^-4 at p = 0.84 GeV/c. …
Date: March 31, 2012
Creator: Kawama, Daisuke
System: The UNT Digital Library
United abominations: Density functional studies of heavy metal chemistry (open access)

United abominations: Density functional studies of heavy metal chemistry

Carbonyl and nitrile addition to uranyl (UO{sup 2}{sup 2+}) are studied. The competition between nitrile and water ligands in the formation of uranyl complexes is investigated. The possibility of hypercoordinated uranyl with acetone ligands is examined. Uranyl is studied with diactone alcohol ligands as a means to explain the apparent hypercoordinated uranyl. A discussion of the formation of mesityl oxide ligands is also included. A joint theory/experimental study of reactions of zwitterionic boratoiridium(I) complexes with oxazoline-based scorpionate ligands is reported. A computational study was done of the catalytic hydroamination/cyclization of aminoalkenes with zirconium-based catalysts. Techniques are surveyed for programming for graphical processing units (GPUs) using Fortran.
Date: April 2, 2012
Creator: Schoendorff, George
System: The UNT Digital Library
Cellulose and cellobiose: adventures of a wandering organic chemist in theoretical chemistry (open access)

Cellulose and cellobiose: adventures of a wandering organic chemist in theoretical chemistry

The energies arising from the rotation of free hydroxyl groups in the central glucose residue of a cellulose crystalline assembly, calculated using RHF, DFT, and FMO2/MP2 methods, will be presented. In addition, interactions of this central glucose residue with some of the surrounding residues (selected on the basis of the interaction strengths) are analyzed. The mechanism of acid-catalyzed hydrolysis of cellobiose, which is the repeating unit of cellulose. Energies corresponding to the different steps of this mechanism calculated using RHF and DFT are compared with those previously reported using molecular dynamics calculations and with experimental data.
Date: April 3, 2012
Creator: Baluyut, John
System: The UNT Digital Library
Ag on Si(111) from basic science to application (open access)

Ag on Si(111) from basic science to application

In our work we revisit Ag and Au adsorbates on Si(111)-7x7, as well as experiment with a ternary system of Pentacene, Ag and Si(111). Of particular interest to us is the Si(111)-({radical}3x{radical}3)R30{degree}–Ag (Ag-Si-{radical}3 hereafter). In this thesis I systematically e plore effects of Ag deposition on the Ag-Si-{radical}3 at different temperatures, film thicknesses and deposition fluxes. The generated insight of the Ag system on the Si(111) is then applied to generate novel methods of nanostructuring and nanowire growth. I then extend our expertise to the Au system on the Ag-Si(111) to gain insight into Au-Si eutectic silicide formation. Finally we explore behavior and growth modes of an organic molecule on the Ag-Si interface.
Date: April 4, 2012
Creator: Belianinov, Aleksey
System: The UNT Digital Library
DESIGN AND ANALYSIS OF AN INTEGRATED PULSE MODULATED S-BAND POWER AMPLIFIER IN GALLIUM NITRIDE PROCESS (open access)

DESIGN AND ANALYSIS OF AN INTEGRATED PULSE MODULATED S-BAND POWER AMPLIFIER IN GALLIUM NITRIDE PROCESS

The design of power amplifiers in any semi-conductor process is not a trivia exercise and it is often encountered that the simulated solution is qualitatively different than the results obtained. Phenomena such as oscillation occurring either in-band or out of band and sometimes at subharmonic intervals, continuous spectrum noticed in some frequency bands, often referred to as chaos, and jumps and hysteresis effects can all be encountered and render a design useless. All of these problems might have been identified through a more rigorous approach to stability analysis. Designing for stability is probably the one area of amplifier design that receives the least amount of attention but incurs the most catastrophic of effects if it is not performed properly. Other parameters such as gain, power output, frequency response and even matching may suitable mitigation paths. But the lack of stability in an amplifier has no mitigating path. In addition to of loss of the design completely there are the increased production cycle costs, costs involved with investigating and resolving the problem and the costs involved with schedule slips or delays resulting from it. The Linville or Rollett stability criteria that many microwave engineers follow and rely exclusively on is not …
Date: April 4, 2012
Creator: SEDLOCK, STEVE
System: The UNT Digital Library
Generation and Characterization of Anisotropic Microstructures in Rare Earth-Iron-Boron Alloys (open access)

Generation and Characterization of Anisotropic Microstructures in Rare Earth-Iron-Boron Alloys

The goal of this work is to investigate methods in which anisotropy could be induced in fine-grained alloys. We have identified two general processing routes to creating a fine, textured microstructure: form an amorphous precursor and devitrify in a manner that induces texture or form the fine, textured microstructure upon cooling directly from the liquid state. Since it is possible to form significant amounts of amorphous material in RE-Fe-B alloys, texture could be induced through biasing the orientationof the crystallites upon crystallization of the amorphous material. One method of creating this bias is to form glassy material and apply uniaxial pressure during crystallization. Experiments on this are presented. All of the work presented here utilizes melt-spinning, either to create precursor material, or to achieve a desired final microstructure. To obtain greater control of the system to process these materials, a study was done on the effects of heating the wheel and modifying the wheel’s surface finish on glass formation and phase selection. The second general approach—creating the desired microstructure directly from the liquid—can be done through directional rapid solidification. In particular, alloys melt-spun at low tangential wheel speeds often display directional columnar growth through a portion of the ribbon. By …
Date: April 23, 2012
Creator: Oster, Nathaniel
System: The UNT Digital Library
A Comparison of "Total Dust" and Inhalable Personal Sampling for Beryllium Exposure. (open access)

A Comparison of "Total Dust" and Inhalable Personal Sampling for Beryllium Exposure.

In 2009, the American Conference of Governmental Industrial Hygienists (ACGIH) reduced the Beryllium (Be) 8-hr Time Weighted Average Threshold Limit Value (TLV-TWA) from 2.0 {micro}g/m{sup 3} to 0.05 {micro}g/m{sup 3} with an inhalable 'I' designation in accordance with ACGIH's particle size-selective criterion for inhalable mass. Currently, per the Department of Energy (DOE) requirements, the Lawrence Livermore National Laboratory (LLNL) is following the Occupational Health and Safety Administration (OSHA) Permissible Exposure Limit (PEL) of 2.0 {micro}g/m{sup 3} as an 8-hr TWA, which is also the 2005 ACGIH TLV-TWA, and an Action Level (AL) of 0.2 {micro}g/m{sup 3} and sampling is performed using the 37mm (total dust) sampling method. Since DOE is considering adopting the newer 2009 TLV guidelines, the goal of this study was to determine if the current method of sampling using the 37mm (total dust) sampler would produce results that are comparable to what would be measured using the IOM (inhalable) sampler specific to the application of high energy explosive work at LLNL's remote experimental test facility at Site 300. Side-by-side personal sampling using the two samplers was performed over an approximately two-week period during chamber re-entry and cleanup procedures following detonation of an explosive assembly containing Beryllium (Be). …
Date: April 25, 2012
Creator: Carter, C. M.
System: The UNT Digital Library
Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs) (open access)

Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For …
Date: April 27, 2012
Creator: Xiao, Teng
System: The UNT Digital Library
Precision Measurement of Electroproduction of pi{sup 0} near Threshold (open access)

Precision Measurement of Electroproduction of pi{sup 0} near Threshold

Electromagnetic production of neutral pions near threshold is the most basic, lowest energy reaction in which a new hadron is created. The electromagnetic interaction is well understood so measurements of this reaction can yield direct insight into the hadronic production mechanism. During the past three decades there have been many developments in both the measurement and theory of threshold pion production, starting with measurements of photo-production at Saclay in 1986 and at Mainz in 1990. These measurements indicated a surprising discrepancy with so-called Low Energy Theorems (LETs) which are based on quite fundamental symmetries and considerations. Chiral Perturbation Theory (ChPT) is an e#11;ective #12;eld theoretic description of the nuclear force which contains the underlying symmetries of the force but deals with nucleons and pions rather than quarks and gluons. It has the advantage of being applicable at low energies but requires tuning some parameters to experimental data. Once these parameters have been determined ChPT predicts how the reaction should behave as a function of the kinematic variable. When applied to the reaction, p({gamma},{pi}{sup 0})p, near threshold it explained the discrepancy with the LETs and made predictions for electroproduction, p(e,e'p){pi}#25;{sup 0}. Electroproduction measurements at Mainz in the 1990's showed a clear …
Date: May 1, 2012
Creator: Chirapatpimol, Khem
System: The UNT Digital Library
SANE's Measurement of the Proton's Virtual Photon Spin Asymmetry, A^p_1, at Large Bjorken x (open access)

SANE's Measurement of the Proton's Virtual Photon Spin Asymmetry, A^p_1, at Large Bjorken x

The experiment SANE (Spin Asymmetries of the Nucleon Experiment) measured inclusive double polarization electron asymmetries on a proton target at the Continuous Electron Beam Accelerator Facility at the Thomas Jefferson National Laboratory in Newport News Virgina. Polarized electrons were scattered from a solid {sup 14}NH{sub 3} polarized target provided by the University of Virginia target group. Measurements were taken with the target polarization oriented at 80 degrees and 180 degrees relative to the beam direction, and beam energies of 4.7 and 5.9 GeV were used. Scattered electrons were detected by a multi-component novel non-magnetic detector package constructed for this experiment. Asymmetries measured at the two target orientations allow for the extraction of the virtual Compton asymmetries A{sub 1}{sup p} and A{sub 2}{sup p} as well as the spin structure functions g{sub 1}{sup p} and g{sub 2}{sup p}. This work addresses the extraction of the virtual Compton asymmetry A{sub 1}{sup p} in the deep inelastic regime. The analysis uses data in the kinematic range from Bjorken x of 0.30 to 0.55, separated into four Q{sup 2} bins from 1.9 to 4.7 GeV{sup 2}.
Date: May 1, 2012
Creator: Mulholland, Jonathan
System: The UNT Digital Library
An investigation of exploitation versus exploration in GBEA optimization of PORS 15 and 16 Problems (open access)

An investigation of exploitation versus exploration in GBEA optimization of PORS 15 and 16 Problems

It was hypothesized that the variations in time to solution are driven by the competing mechanisms of exploration and exploitation.This thesis explores this hypothesis by examining two contrasting problems that embody the hypothesized tradeoff between exploration and exploitation. Plus one recall store (PORS) is an optimization problem based on the idea of a simple calculator with four buttons: plus, one, store, and recall. Integer addition and store are classified as operations, and one and memory recall are classified as terminals. The goal is to arrange a fixed number of keystrokes in a way that maximizes the numerical result. PORS 15 (15 keystrokes) represents the subset of difficult PORS problems and PORS 16 (16 keystrokes) represents the subset of PORS problems that are easiest to optimize. The goal of this work is to examine the tradeoff between exploitation and exploration in graph based evolutionary algorithm (GBEA) optimization. To do this, computational experiments are used to examine how solutions evolve in PORS 15 and 16 problems when solved using GBEAs. The experiment is comprised of three components; the graphs and the population, the evolutionary algorithm rule set, and the example problems. The complete, hypercube, and cycle graphs were used for this experiment. …
Date: May 8, 2012
Creator: Koch, Kaelynn
System: The UNT Digital Library
Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance (open access)

Homometallic and Heterometallic Antiferromagnetic Rings: Magnetic Properties Studied by Nuclear Magnetic Resonance

The aim of the present thesis is to investigate the local magnetic properties of homometallic Cr{sub 8} antiferromagnetic (AFM) ring and the changes occurring by replacing one Cr{sup 3+} ion with diamagnetic Cd{sup 2+} (Cr{sub 7}Cd) and with Ni{sup 2+} (Cr{sub 7}Ni). In the heterometallic ring a redistribution of the local magnetic moment is expected in the low temperature ground state. We have investigated those changes by both {sup 53}Cr-NMR and {sup 19}F-NMR. We have determined the order of magnitude of the transferred hyperfine coupling constant {sup 19}F - M{sup +} where M{sup +} = Cr{sup 3+}, Ni{sup 2+} in the different rings. This latter result gives useful information about the overlapping of the electronic wavefunctions involved in the coordinative bond.
Date: May 9, 2012
Creator: Casadei, Cecilia
System: The UNT Digital Library
Determination of the Azimuthal Asymmetry of Deuteron Photodisintegration in the Energy Region E{sub {gamma}} = 1.1 - 2.3 GeV (open access)

Determination of the Azimuthal Asymmetry of Deuteron Photodisintegration in the Energy Region E{sub {gamma}} = 1.1 - 2.3 GeV

Deuteron photodisintegration is a benchmark process for the investigation of the role of quarks and gluons in nuclei. Existing theoretical models of this process describe the available cross sections with the same degree of success. Therefore, spin-dependent observables are crucial for a better understanding of the underlying dynamical mechanisms. However, data on the induced polarization (P{sub y}), along with the polarization transfers (C{sub x'} and C{sub z'} ), have been shown to be insensitive to differences between theoretical models. On the other hand, the beam-spin asymmetry {Sigma} is predicted to have a large sensitivity and is expected to help in identifying the energy at which the transition from the hadronic to the quark-gluon picture of the deuteron takes place. Here, the work done to determine the experimental values of the beam-spin asymmetry in deuteron photodisintegration for photon energies between 1.1 – 2.3 GeV is presented. The data were taken with the CLAS at the Thomas Jefferson National Accelerator Facility during the g13 experiment. Photons with linear polarization of ~80% were produced using the coherent bremsstrahlung facility in Hall B. The work done by the author to calibrate a specific detector system, select deuteron photodisintegration events, study the degree of photon …
Date: May 20, 2012
Creator: Zachariou, Nicholas
System: The UNT Digital Library
Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams (open access)

Much Ado about Microbunching: Coherent Bunching in High Brightness Electron Beams

The push to provide ever brighter coherent radiation sources has led to the creation of correspondingly bright electron beams. With billions of electrons packed into normalized emittances (phase space) below one micron, collective effects may dominate both the preservation and use of such ultra-bright beams. An important class of collective effects is due to density modulations within the bunch, or microbunching. Microbunching may be deleterious, as in the case of the Microbunching Instability (MBI), or it may drive radiation sources of unprecedented intensity, as in the case of Free Electron Lasers (FELs). In this work we begin by describing models of microbunching due to inherent beam shot noise, which sparks both the MBI as well as SLAC's Linac Coherent Light Source, the world's first hard X-ray laser. We first use this model to propose a mechanism for reducing the inherent beam shot noise as well as for predicting MBI effects. We then describe experimental measurements of the resulting microbunching at LCLS, including optical radiation from the MBI, as well as the first gain length and harmonic measurements from a hard X-ray FEL. In the final chapters, we describe schemes that use external laser modulations to microbunch light sources of the …
Date: May 25, 2012
Creator: Ratner, Daniel & /SLAC, /Stanford U.
System: The UNT Digital Library
Laser Processing of Metals and Polymers (open access)

Laser Processing of Metals and Polymers

A laser offers a unique set of opportunities for precise delivery of high quality coherent energy. This energy can be tailored to alter the properties of material allowing a very flexible adjustment of the interaction that can lead to melting, vaporization, or just surface modification. Nowadays laser systems can be found in nearly all branches of research and industry for numerous applications. Sufficient evidence exists in the literature to suggest that further advancements in the field of laser material processing will rely significantly on the development of new process schemes. As a result they can be applied in various applications starting from fundamental research on systems, materials and processes performed on a scientific and technical basis for the industrial needs. The interaction of intense laser radiation with solid surfaces has extensively been studied for many years, in part, for development of possible applications. In this thesis, I present several applications of laser processing of metals and polymers including polishing niobium surface, producing a superconducting phase niobium nitride and depositing thin films of niobium nitride and organic material (cyclic olefin copolymer). The treated materials were examined by scanning electron microscopy (SEM), electron probe microanalysis (EPMA), atomic force microscopy (AFM), high resolution …
Date: May 31, 2012
Creator: Singaravelu, Senthilraja
System: The UNT Digital Library