Retrofitting and the mu Problem (open access)

Retrofitting and the mu Problem

One of the challenges of supersymmetry (SUSY) breaking and mediation is generating a {mu} term consistent with the requirements of electro-weak symmetry breaking. The most common approach to the problem is to generate the {mu} term through a SUSY breaking F-term. Often these models produce unacceptably large B{mu} terms as a result. We will present an alternate approach, where the {mu} term is generated directly by non-perturtative effects. The same non-perturbative effect will also retrofit the model of SUSY breaking in such a way that {mu} is at the same scale as masses of the Standard Model superpartners. Because the {mu} term is not directly generated by SUSY breaking effects, there is no associated B{mu} problem. These results are demonstrated in a toy model where a stringy instanton generates {mu}.
Date: August 26, 2010
Creator: Green, Daniel; Weigand, Timo & /SLAC /Stanford U., Phys. Dept.
Object Type: Report
System: The UNT Digital Library
Large-N volume independence in conformal and confining gauge theories (open access)

Large-N volume independence in conformal and confining gauge theories

Consequences of large N volume independence are examined in conformal and confining gauge theories. In the large N limit, gauge theories compactified on R{sup d-k} x (S{sup 1}){sup k} are independent of the S{sup 1} radii, provided the theory has unbroken center symmetry. In particular, this implies that a large N gauge theory which, on R{sup d}, flows to an IR fixed point, retains the infinite correlation length and other scale invariant properties of the decompactified theory even when compactified on R{sup d-k} x (S{sup 1}){sup k}. In other words, finite volume effects are 1/N suppressed. In lattice formulations of vector-like theories, this implies that numerical studies to determine the boundary between confined and conformal phases may be performed on one-site lattice models. In N = 4 supersymmetric Yang-Mills theory, the center symmetry realization is a matter of choice: the theory on R{sup 4-k} x (S{sup 1}){sup k} has a moduli space which contains points with all possible realizations of center symmetry. Large N QCD with massive adjoint fermions and one or two compactified dimensions has a rich phase structure with an infinite number of phase transitions coalescing in the zero radius limit.
Date: August 26, 2010
Creator: Unsal, Mithat & Yaffe, Laurence G.
Object Type: Article
System: The UNT Digital Library
Temporal Response of Nonequilibrium Correlated Electrons (open access)

Temporal Response of Nonequilibrium Correlated Electrons

In this work we examine the time-resolved, instantaneous current response for the spinless Falicov-Kimball model at half-filling, on both sides of the Mott-Hubbard metal-insulator transition, driven by a strong electric field pump pulse. The results are obtained using an exact, nonequilibrium, many-body impurity solution specifically designed to treat the out-of-equilibrium evolution of electrons in time-dependent fields. We provide a brief introduction to the method and its computational details. We find that the current develops Bloch oscillations, similar to the case of DC driving fields, with an additional amplitude modulation, characterized by beats and induced by correlation effects. Correlations primarily manifest themselves through an overall reduction in magnitude and shift in the onset time of the current response with increasing interaction strength.
Date: August 26, 2010
Creator: Moritz, Brian; U., /SLAC /North Dakota; Devereaux, T.P.; /SLAC /Stanford U., Geballe Lab; Freericks, J.K. & U., /Georgetown
Object Type: Article
System: The UNT Digital Library
Fabrication and Characterization of Woodpile Structures for Direct Laser Acceleration (open access)

Fabrication and Characterization of Woodpile Structures for Direct Laser Acceleration

An eight and nine layer three dimensional photonic crystal with a defect designed specifically for accelerator applications has been fabricated. The structures were fabricated using a combination of nanofabrication techniques, including low pressure chemical vapor deposition, optical lithography, and chemical mechanical polishing. Limits imposed by the optical lithography set the minimum feature size to 400 nm, corresponding to a structure with a bandgap centered at 4.26 {micro}m. Reflection spectroscopy reveal a peak in reflectivity about the predicted region, and good agreement with simulation is shown. The eight and nine layer structures will be aligned and bonded together to form the complete seventeen layer woodpile accelerator structure.
Date: August 26, 2010
Creator: McGuinness, C.; Colby, E.; England, R. J.; Ng, J.; Noble, R.J.; Peralta, E. et al.
Object Type: Article
System: The UNT Digital Library
P1-Marx Modulator for the ILC (open access)

P1-Marx Modulator for the ILC

A first generation prototype, P1, Marx-topology klystron modulator has been developed at the SLAC National Accelerator Laboratory for the International Linear Collider (ILC) project. It is envisioned as a lower cost, smaller footprint, and higher reliability alternative to the present, bouncer-topology, baseline design. The application requires 120 kV (+/-0.5%), 140 A, 1.6 ms pulses at a rate of 5 Hz. The Marx constructs the high voltage pulse by combining, in series, a number of lower voltage cells. The Marx employs solid state elements; IGBTs and diodes, to control the charge, discharge and isolation of the cells. Active compensation of the output is used to achieve the voltage regulation while minimizing the stored energy. The P1-Marx has been integrated into a test stand with a 10 MW L-band klystron, where each is undergoing life testing. A review of the P1-Marx design and its operational history in the L-band test stand are presented.
Date: August 26, 2010
Creator: Beukers, T.; Burkhart, C.; Kemp, M.; Larsen, R.; Nguyen, M.; Olsen, J. et al.
Object Type: Article
System: The UNT Digital Library
Mixing and CP Violation in Charm Meson Decays (open access)

Mixing and CP Violation in Charm Meson Decays

Mixing and CP violation (CPV ) in the neutral D system were first discussed over thirty years ago but mixing was observed for the first time only very recently. Since then, these observations have been confirmed in other experiments and in other D{sup 0} decay modes. Unlike the K, B and B{sub s} systems, for which mixing was observed years earlier, the short distance ({Delta}C = 2) amplitude contributing to mixing in the D system arises from box diagrams with down- rather than up-type quarks in the loops. The d and s components are GIM-suppressed, and the b component is suppressed by the small V{sub ub} CKM coupling. In the standard model (SM), therefore, long range, non-perturbative effects, a coherent sum over intermediate states accessible to both D{sup 0} and {bar D}{sup 0}, are the main contribution to mixing. These are hard to compute reliably, however. The phenomenon of mixing in neutral meson systems has now been observed in all flavours, but only in the past year in the D{sup 0} system. The standard model anticipated that, for the charm sector, the mixing rate would be small, and also that CP violation, either in mixing or in direct decay, would …
Date: August 26, 2010
Creator: Meadows, B & U., /Cincinnati
Object Type: Article
System: The UNT Digital Library
Global F-theory GUTs (open access)

Global F-theory GUTs

We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also provide a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.
Date: August 26, 2010
Creator: Blumenhagen, Ralph; Grimm, Thomas W.; Jurke, Benjamin & Weigand, Timo
Object Type: Article
System: The UNT Digital Library
Conformality or Confinement (II): One-flavor CFTs and Mixed-Representation QCD (open access)

Conformality or Confinement (II): One-flavor CFTs and Mixed-Representation QCD

We study QCD-like four dimensional theories in the theoretically controlled framework of deformation theory and/or twisted partition function on S{sup 1} x R{sup 3}. By using duality, we show that a class of one-flavor theories exhibit new physical phenomena: discrete chiral symmetry breaking ({chi}SB) induced by the condensation of topological disorder operators, and confinement and the generation of mass gap due to new non-selfdual topological excitations. In the R{sup 4} limit, we argue that the mass gap disappears, the {chi}SB vacua are of runaway type, and the theory flows to a CFT. We also study mixed representation theories and find abelian {chi}SB by topological operators charged under abelian chiral symmetries. These are reminiscent to, but distinct, from Seiberg-Witten theory with matter, where 4d monopoles have non-abelian chiral charge. This examination also helps us refine our recent bounds on the conformal window. In an Addendum, we also discuss mixed vectorlike/chiral representation theories, obtain bounds on their conformal windows, and compare with the all-order beta function results of arXiv:0911.0931.
Date: August 26, 2010
Creator: Poppitz, Erich; U., /Toronto; Unsal, Mithat & /SLAC /Stanford U., Phys. Dept.
Object Type: Article
System: The UNT Digital Library
Light-Front Quantization Approach to the Gauge Gravity Correspondence and Hadron Spectroscopy (open access)

Light-Front Quantization Approach to the Gauge Gravity Correspondence and Hadron Spectroscopy

We find a correspondence between semiclassical QCD quantized on the light-front and a dual gravity model in anti-de Sitter (AdS) space, thus providing an initial approximation to QCD in its strongly coupled regime. This correspondence - light-front holography - leads to a light-front Hamiltonian and relativistic bound-state wave equations that are functions of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within hadrons at equal lightfront time. The eigenvalues of the resulting light-front Schrodinger and Dirac equations are consistent with the observed light meson and baryon spectrum, and the eigenmodes provide the light-front wavefunctions, the probability amplitudes describing the dynamics of the hadronic constituents. The light-front equations of motion, which are dual to an effective classical gravity theory, possess remarkable algebraic and integrability properties which are dictated by the underlying conformal properties of the theory. We extend the algebraic construction to include a confining potential while preserving the integrability of the mesonic and baryonic bound-state equations.
Date: May 26, 2010
Creator: de Teramond, Guy F.; U., /Costa Rica & Brodsky, Stanley J.
Object Type: Article
System: The UNT Digital Library
One Bacterial Cell, One Complete Genome (open access)

One Bacterial Cell, One Complete Genome

While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical …
Date: April 26, 2010
Creator: Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos; Clum, Alicia; Copeland, Alex; Schackwitz, Wendy et al.
Object Type: Article
System: The UNT Digital Library
A Hybrid Higgs (open access)

A Hybrid Higgs

We construct composite Higgs models admitting a weakly coupled Seiberg dual description. We focus on the possibility that only the up-type Higgs is an elementary field, while the down-type Higgs arises as a composite hadron. The model, based on a confining SQCD theory, breaks supersymmetry and electroweak symmetry dynamically and calculably. This simultaneously solves the {mu}/B{sub {mu}} problem and explains the smallness of the bottom and tau masses compared to the top mass. The proposal is then applied to a class of models where the same confining dynamics is used to generate the Standard Model flavor hierarchy by quark and lepton compositeness. This provides a unified framework for flavor, supersymmetry breaking and electroweak physics. The weakly coupled dual is used to explicitly compute the MSSM parameters in terms of a few microscopic couplings, giving interesting relations between the electroweak and soft parameters. The RG evolution down to the TeV scale is obtained and salient phenomenological predictions of this class of 'single-sector' models are discussed.
Date: August 26, 2010
Creator: Schafer-Nameki, Sakura; Tamarit, Carlos; /Santa Barbara, KITP; Torroba, Gonzalo & /SLAC /Santa Barbara, KITP
Object Type: Report
System: The UNT Digital Library
Quiet Periods in Edge Turbulence Preceding the L-H Transition in NSTX (open access)

Quiet Periods in Edge Turbulence Preceding the L-H Transition in NSTX

This paper describes the first observations in NSTX of ‘quiet periods’ in the edge turbulence preceding the L-H transition, as diagnosed by the GPI diagnostic near the outer midplane separatrix. During these quiet periods the GPI Dα light emission pattern was transiently similar to that seen during Hmode, i.e. with a relatively small fraction of the GPI light emission located outside the separatrix. These quiet periods had a frequency of ~3 kHz for at least 30 msec before the L-H transition, and were correlated with changes in the direction of the local poloidal velocity. The GPI turbulence images were also analyzed to obtain an estimate for the dimensionless poloidal shearing S =(dVp/dr)(Lr/Lp)τ. The values of S were strongly modulated by the quiet periods, but not otherwise varying for at least 30 msec preceding the L-H transition. Since neither the quiet periods nor the shear flow increased significantly immediately preceding the L-H transition, neither of these appears to be the trigger for this transition, at least for these cases in NSTX.
Date: April 26, 2010
Creator: Zweben, S.; Hager, R.; Hallatschek, K.; Kaye, S. M.; Munsat, T.; Poli, F. M. et al.
Object Type: Report
System: The UNT Digital Library
Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: Expanding the application range (open access)

Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: Expanding the application range

A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47(7), 073602-1-5 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A 616, 172-82 (2010]. Here we report on a significant expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds …
Date: July 26, 2010
Creator: Yashchuk, Valeriy V; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond et al.
Object Type: Article
System: The UNT Digital Library
A Search for Scalar Chameleons with ADMX (open access)

A Search for Scalar Chameleons with ADMX

Scalar fields with a"chameleon" property, in which the effective particle mass is a function of its local environment, are common to many theories beyond the standard model and could be responsible for dark energy. If these fields couple weakly to the photon, they could be detectable through the afterglow effect of photon-chameleon-photon transitions. The ADMX experiment was used in the first chameleon search with a microwave cavity to set a new limit on scalar chameleon-photon coupling beta_gamma excluding values between 2x109 and 5x1014 for effective chameleon masses between 1.9510 and 1:9525 micro eV.
Date: April 26, 2010
Creator: Rybka, G.; Hotz, M.; Rosenberg, L. J.; Asztalos, S. J.; Carosi, G.; Hagmann, C. et al.
Object Type: Article
System: The UNT Digital Library
Fermi surface of SrFe2P2 determined by de Haas-van Alphen effect (open access)

Fermi surface of SrFe2P2 determined by de Haas-van Alphen effect

We report measurements of the Fermi surface (FS) of the ternary iron-phosphide SrFe{sub 2}P{sub 2} using the de Haas-van Alphen effect. The calculated FS of this compound is very similar to SrFe{sub 2}As{sub 2}, the parent compound of the high temperature superconductors. Our data show that the Fermi surface is composed of two electron and two hole sheets in agreement with bandstructure calculations. Several of the sheets show strong c-axis warping emphasizing the importance of three-dimensionality in the non-magnetic state of the ternary pnictides. We find that the electron and hole pockets have a different topology, implying that this material does not satisfy a ({pi},{pi}) nesting condition.
Date: May 26, 2010
Creator: Analytis, J.G.
Object Type: Article
System: The UNT Digital Library
Terrestrial and Solar Limits on Long-Lived Particles in a Dark Sector (open access)

Terrestrial and Solar Limits on Long-Lived Particles in a Dark Sector

Dark matter charged under a new gauge sector, as motivated by recent data, suggests a rich GeV-scale 'dark sector' weakly coupled to the Standard Model by gauge kinetic mixing. The new gauge bosons can decay to Standard Model leptons, but this mode is suppressed if decays into lighter 'dark sector' particles are kinematically allowed. These particles in turn typically have macroscopic decay lifetimes that are constrained by two classes of experiments, which we discuss. Lifetimes of 10 cm {approx}< c{tau} {approx}< 10{sup 8} cm are constrained by existing terrestrial beam-dump experiments. If, in addition, dark matter captured in the Sun (or Earth) annihilates into these particles, lifetimes up to {approx} 10{sup 15} cm are constrained by solar observations. These bounds span fourteen orders of magnitude in lifetime, but they are not exhaustive. Accordingly, we identify promising new directions for experiments including searches for displaced di-muons in B-factories, studies at high-energy and -intensity proton beam dumps, precision gamma-ray and electronic measurements of the Sun, and milli-charge searches re-analyzed in this new context.
Date: August 26, 2010
Creator: Schuster, Philip; Toro, Natalia & Yavin, Itay
Object Type: Article
System: The UNT Digital Library
POTENTIAL FOR STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS CONTAINING HIGHLY CAUSTIC SOLUTIONS (open access)

POTENTIAL FOR STRESS CORROSION CRACKING OF A537 CARBON STEEL NUCLEAR WASTE TANKS CONTAINING HIGHLY CAUSTIC SOLUTIONS

The evaporator recycle streams of nuclear waste tanks may contain waste in a chemistry and temperature regime that exceeds the current corrosion control program, which imposes temperature limits to mitigate caustic stress corrosion cracking (CSCC). A review of the recent service history found that two of these A537 carbon steel tanks were operated in highly concentrated hydroxide solution at high temperature. Visual inspections, experimental testing, and a review of the tank service history have shown that CSCC has occurred in uncooled/un-stress relieved tanks of similar construction. Therefore, it appears that the efficacy of stress relief of welding residual stress is the primary corrosion-limiting mechanism. The objective of this experimental program is to test A537 carbon steel small scale welded U-bend specimens and large welded plates (30.48 x 30.38 x 2.54 cm) in a caustic solution with upper bound chemistry (12 M hydroxide and 1 M each of nitrate, nitrite, and aluminate) and temperature (125 C). These conditions simulate worst-case situations in these nuclear waste tanks. Both as-welded and stress-relieved specimens have been tested. No evidence of stress corrosion cracking was found in the U-bend specimens after 21 days of testing. The large plate test was completed after 12 weeks of …
Date: April 26, 2010
Creator: Lam, P.; Stripling, C.; Fisher, D. & Elder, J.
Object Type: Article
System: The UNT Digital Library
Predicting laser-induced bulk damage and conditioning for deuterated potassium di-hydrogen phosphate crystals using ADM (absorption distribution model) (open access)

Predicting laser-induced bulk damage and conditioning for deuterated potassium di-hydrogen phosphate crystals using ADM (absorption distribution model)

We present an empirical model that describes the experimentally observed laser-induced bulk damage and conditioning behavior in deuterated Potassium dihydrogen Phosphate (DKDP) crystals in a self-consistent way. The model expands on an existing nanoabsorber precursor model and the multi-step absorption mechanism to include two populations of absorbing defects, one with linear absorption and another with nonlinear absorption. We show that this model connects previously uncorrelated small-beam damage initiation probability data to large-beam damage density measurements over a range of ns pulse widths relevant to ICF lasers such as the National Ignition Facility (NIF). In addition, this work predicts the damage behavior of laser-conditioned DKDP and explains the upper limit to the laser conditioning effect. The ADM model has been successfully used during the commissioning and early operation of the NIF.
Date: February 26, 2010
Creator: Liao, Z. M.; Spaeth, M. L.; Manes, K.; Adams, J. J. & Carr, C. W.
Object Type: Article
System: The UNT Digital Library
Semileptonic B-Meson Decays (open access)

Semileptonic B-Meson Decays

The study of the semileptonic B-meson decays is the most accessible and cleanest way to determine the CKM matrix elements |V{sub cb}| and V{sub ub}. These decays also provide experimental access to study the QCD form-factors, heavy quark masses, and HQE parameters. The theoretical description of semileptonic B-meson decays at the parton level is very simple because there is no interaction between leptonic and hadronic currents. At the hadron level one needs to introduce corrections due to the strong interaction between quarks. Especially in the description of the inclusive B-meson decays the motion of the b-quark inside the B-meson plays a crucial role. All these effects are described in the frameworks of Heavy Quark Effective Theory (HQET) and Lattice QCD (LQCD). We give an overview about results of studies of semileptonic B-meson decays collected with the BABAR and Belle detectors at the PEP-II and the KEKB e{sup +}e{sup -}-storage rings. We present recent results on hadronic moments measured in inclusive B {yields} X{sub c}lv and B {yields} X{sub u}lv decays and extracted heavy quark masses m{sub b} and m{sub c} and dominant non-perturbative Heavy Quark Expansion (HQE) parameters. We also report the measurements of the CKM matrix elements |V{sub cb}| …
Date: August 26, 2010
Creator: Volk, Alexei & /Dresden, Tech. U.
Object Type: Article
System: The UNT Digital Library
Quantum Oscillation Studies of the Fermi Surface of LaFePO (open access)

Quantum Oscillation Studies of the Fermi Surface of LaFePO

We review recent experimental measurements of the Fermi surface of the iron-pnictide superconductor LaFePO using quantum oscillation techniques. These studies show that the Fermi surface topology is close to that predicted by first principles density functional theory calculations, consisting of quasi-twodimensional electron-like and hole-like sheets. The total volume of the two hole sheets is almost equal to that of the two electron sheets, and the hole and electron Fermi surface sheets are close to a nesting condition. No evidence for the predicted three dimensional pocket arising from the Fe d{sub z}{sup 2} band is found. Measurements of the effective mass suggest a renormalisation of around two, close to the value for the overall band renormalisation found in recent angle resolved photoemission measurements.
Date: May 26, 2010
Creator: Carrington, A.
Object Type: Article
System: The UNT Digital Library
PICMG xTCA Standards Extensions for Physics: New Developments & Future Plans (open access)

PICMG xTCA Standards Extensions for Physics: New Developments & Future Plans

After several years of planning and workshop meetings, a decision was reached in late 2008 to organize PICMG xTCA for Physics Technical Subcommittees to extend the ATCA and MTCA telecom standards for enhanced system performance, availability and interoperability for physics controls and applications hardware and software. Since formation in May-June 2009, the Hardware Technical Subcommittee has developed a number of ATCA, ARTM, AMC, MTCA and RTM extensions to be completed in mid-to-late 2010. The Software Technical Subcommittee is developing guidelines to promote interoperability of modules designed by industry and laboratories, in particular focusing on middleware and generic application interfaces such as Standard Process Model, Standard Device Model and Standard Hardware API. The paper describes the prototype design work completed by the lab-industry partners to date, the timeline for hardware releases to PICMG for approval, and the status of the software guidelines roadmap. The paper also briefly summarizes the program of the 4th xTCA for Physics Workshop immediately preceding the RT2010 Conference. he case for developing ATCA and MicroTCA (xTCA) specification extensions for physics has been covered in several previous papers. Briefly, ATCA and MicroTCA is the first all-serial communication platform available to the physics community to support both massively complex …
Date: August 26, 2010
Creator: Larsen, R.S.
Object Type: Article
System: The UNT Digital Library
Lessons Learned from PEP-II LLRF and Longitudinal Feedback (open access)

Lessons Learned from PEP-II LLRF and Longitudinal Feedback

The PEP-II B-Factory collider ended the final phase of operation at nearly twice the design current and 4X the design luminosity. To highlight the evolution from the original conceptual design through to the 1.2E34 final machine we choose one example each from the broadband feedback and from the LLRF system. They illustrate the original design estimation missed some very significant details, and how in the course of PEP-II operation unexpected difficulties led to significant insights and new approaches which allowed higher machine performance. We present valuable 'lessons learned' which are of interest to designers of next generation feedback and impedance controlled LLRF systems.
Date: August 26, 2010
Creator: Fox, J. D.; Mastorides, T.; Rivetta, C. H.; Van Winkle, D. & Teytelman, D.
Object Type: Article
System: The UNT Digital Library
'Insightful D-branes' (open access)

'Insightful D-branes'

We study a simple model of a black hole in AdS and obtain a holographic description of the region inside the horizon. A key role is played by the dynamics of the scalar fields in the dual gauge theory. This leads to a proposal for a dual description of D-branes falling through the horizon of any AdS black hole. The proposal uses a field-dependent time reparameterization in the field theory. We relate this reparametrization to various gauge invariances of the theory. Finally, we speculate on information loss and the black hole singularity in this context.
Date: August 26, 2010
Creator: Horowitz, Gary; /UC, Santa Barbara; Lawrence, Albion; /Brandeis U. /Santa Barbara, KITP; Silverstein, Eva & /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP
Object Type: Article
System: The UNT Digital Library
Status of CKM angle measurements, a report from BaBar and Belle (open access)

Status of CKM angle measurements, a report from BaBar and Belle

I will review the latest developments in determining the CP-violating phases of the CKM matrix elements from measurements by the BaBar and BELLE experiments at the high-luminosity B factories (PEP-II and KEKB). The emphasis will be on the angle {gamma}/{phi}{sub 3} of the Unitarity Triangle, which is the relative phase arg(-V{sub ud}V*{sub ub}/V{sub cd}V*{sub cb}), or the CP-violating phase of the b {yields} u transition in the commonly used Wolfenstein convention.
Date: August 26, 2010
Creator: Long, Owen & /UC, Riverside
Object Type: Article
System: The UNT Digital Library