Transient Heat Transfer Analysis for Ion-Exchange Waste Removal Process (open access)

Transient Heat Transfer Analysis for Ion-Exchange Waste Removal Process

The small column ion exchange (SCIX) process treats low curie salt (LCS) waste before feeding it to the saltstone facility to be made into grout. Through this process, radioactive cesium from the salt solution is absorbed into the CST bed. A CST column loaded with radioactive cesium will generate significant heat from radiolytic decay. If engineering designs of the CST sorption column can not handle this thermal load, hot spots may develop locally within the column and degrade the performance of the ion-exchange process. The CST starts to degrade at about 80 to 85 C, and the CST completely changes to another material above 120 C. In addition, the process solution will boil around 130 C. If the column boiled dry, the sorbent could plug the column and require replacement of the column module. The objective of the present work is to compute temperature distributions across the column as a function of transit time after the initiation of accidents when there is loss of the salt solution flow in the CST column under abnormal conditions of the process operations. In this situation, the customer requested that the calculations should be conservative in that the model results would show the maximum …
Date: July 12, 2010
Creator: Lee, S.
System: The UNT Digital Library
Study of multi-muon events produced in p anti-p interactions at s**(1/2) = 1.96-TeV (open access)

Study of multi-muon events produced in p anti-p interactions at s**(1/2) = 1.96-TeV

We report the results of a study of multi-muon events produced at the Fermilab Tevatron collider and acquired with the CDF II detector using a dedicated dimuon trigger. The production cross section and kinematics of events in which both muon candidates are produced inside the beam pipe of radius 1.5 cm are successfully modeled by known processes which include heavy flavor production. In contrast, we are presently unable to fully account for the number and properties of the remaining events, in which at least one muon candidate is produced outside of the beam pipe, in terms of the same understanding of the CDF II detector, trigger, and event reconstruction.
Date: June 12, 2010
Creator: Aaltonen, T.; Phys., /Helsinki Inst. of; Adelman, J.; /Chicago U., EFI; Alvarez Gonzalez, B.; Phys., /Cantabria Inst. of et al.
System: The UNT Digital Library
Carbon contamination topography analysis of EUV masks (open access)

Carbon contamination topography analysis of EUV masks

The impact of carbon contamination on extreme ultraviolet (EUV) masks is significant due to throughput loss and potential effects on imaging performance. Current carbon contamination research primarily focuses on the lifetime of the multilayer surfaces, determined by reflectivity loss and reduced throughput in EUV exposure tools. However, contamination on patterned EUV masks can cause additional effects on absorbing features and the printed images, as well as impacting the efficiency of cleaning process. In this work, several different techniques were used to determine possible contamination topography. Lithographic simulations were also performed and the results compared with the experimental data.
Date: March 12, 2010
Creator: Fan, Y.-J.; Yankulin, L.; Thomas, P.; Mbanaso, C.; Antohe, A.; Garg, R. et al.
System: The UNT Digital Library
Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data (open access)

Aerosol indirect effects ? general circulation model intercomparison and evaluation with satellite data

Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth ({tau}{sub a}) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (N{sub d}) compares relatively well to the satellite data at least over the ocean. The relationship between {tau}{sub a} and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (f{sub cld}) and {tau}{sub a} as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the …
Date: March 12, 2010
Creator: Quaas, Johannes; Ming, Yi; Menon, Surabi; Takemura, Toshihiko; Wang, Minghuai; Penner, Joyce E. et al.
System: The UNT Digital Library
A Flexible Reservation Algorithm for Advance Network Provisioning (open access)

A Flexible Reservation Algorithm for Advance Network Provisioning

Many scientific applications need support from a communication infrastructure that provides predictable performance, which requires effective algorithms for bandwidth reservations. Network reservation systems such as ESnet's OSCARS, establish guaranteed bandwidth of secure virtual circuits for a certain bandwidth and length of time. However, users currently cannot inquire about bandwidth availability, nor have alternative suggestions when reservation requests fail. In general, the number of reservation options is exponential with the number of nodes n, and current reservation commitments. We present a novel approach for path finding in time-dependent networks taking advantage of user-provided parameters of total volume and time constraints, which produces options for earliest completion and shortest duration. The theoretical complexity is only O(n2r2) in the worst-case, where r is the number of reservations in the desired time interval. We have implemented our algorithm and developed efficient methodologies for incorporation into network reservation frameworks. Performance measurements confirm the theoretical predictions.
Date: April 12, 2010
Creator: Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie & Sim, Alex
System: The UNT Digital Library
EUV-multilayers on grating-like topographies (open access)

EUV-multilayers on grating-like topographies

In this study, multilayer morphology near the key anomalies in grating-like structures, namely sharp step-edges and steep walls, are examined. Different deposition schemes are employed. Based on cross section TEM analysis an explanatory model describing the morphology of the successive layers is developed. A further insight into the periodicity and the general performance of the multilayer is obtained by EUV microscopy. The main distortions in multilayer structure and hence EUV performance are found to be restricted to a region within a few hundred nanometers from the anomalies, which is very small compared to the proposed grating period (50-100 {micro}m). These multilayer coated blazed gratings can thus be considered a viable option for spectral purity enhancement of EUV light sources.
Date: March 12, 2010
Creator: van Boogaard, A. J. R.; Louis, E.; Goldberg, K. A.; Mochi, I. & Bijkerk, F.
System: The UNT Digital Library
Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems (open access)

Hybrid Parallelism for Volume Rendering on Large, Multi-core Systems

This work studies the performance and scalability characteristics of"hybrid'"parallel programming and execution as applied to raycasting volume rendering -- a staple visualization algorithm -- on a large, multi-core platform. Historically, the Message Passing Interface (MPI) has become the de-facto standard for parallel programming and execution on modern parallel systems. As the computing industry trends towards multi-core processors, with four- and six-core chips common today and 128-core chips coming soon, we wish to better understand how algorithmic and parallel programming choices impact performance and scalability on large, distributed-memory multi-core systems. Our findings indicate that the hybrid-parallel implementation, at levels of concurrency ranging from 1,728 to 216,000, performs better, uses a smaller absolute memory footprint, and consumes less communication bandwidth than the traditional, MPI-only implementation.
Date: July 12, 2010
Creator: Howison, Mark; Bethel, E. Wes & Childs, Hank
System: The UNT Digital Library
Transverse field-induced nucleation pad switching modes during domain wall injection (open access)

Transverse field-induced nucleation pad switching modes during domain wall injection

We have used magnetic transmission X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned Ni{sub 80}Fe{sub 20} domain wall 'injection pads' and attached planar nanowires. Comparison with micromagnetic simulations suggests that the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent state. The magnetization reversal pathway is also altered by the inclusion of transverse magnetic fields. These different modes explain previous results of domain wall injection into nanowires. Even more striking was the observation of domain walls injecting halfway across the width of wider (>400 nm wide) wires but over wire lengths of several micrometers. These extended Neel walls can interact with adjacent nanowires and cause a switching in the side of the wire undergoing reversal as the domain wall continues to expand.
Date: March 12, 2010
Creator: Bryan, M. T.; Fry, P. W.; Schrefl, T.; Gibbs, M. R. J.; Allwood, D. A.; Im, M.-Y. et al.
System: The UNT Digital Library
Beam commissioning results for the RFQ and MEBT of the EBIS based preinjector for RHIC (open access)

Beam commissioning results for the RFQ and MEBT of the EBIS based preinjector for RHIC

The EBIS based preinjector for both the Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory (NSRL) is now being commissioned at Brookhaven National Laboratory (BNL). In 2008, the RFQ for the project was delivered and commissioned using Test EBIS, which was built to demonstrate the high current EBIS's performance. A dedicated beamline after the RFQ was assembled to confirm the RFQ's performance, and the beam energy was measured by a bending dipole magnet. In November 2009, the RFQ was moved to the final location and the vanes were realigned. The beam commissioning with the RHIC-EBIS was started again during March 2010. The RFQ accelerates ions from 17 keV/u to 300 keV/u and operates at 100.625 MHz. It is followed by a short Medium Energy Beam Transport (MEBT), which consists of four quadrupoles and one buncher cavity. Some temporary diagnostics for this commissioning include an emittance probe, TOF system, fast Faraday cup, and beam current measurement units. As of September 2010, the RFQ and the MEBT show expected performance with He{sup +}, Au{sup 32+} and Fe{sup 20+} beams. Further commissioning for higher intensity beams is in progress.
Date: September 12, 2010
Creator: Okamura, M.; Alessi, J.; Beebe, E.; Kondo, K.; Lambiase, R.; Lockey, R. et al.
System: The UNT Digital Library
Plasticity and Failure in Nanocrystalline BCC Metals via MD Simulation (open access)

Plasticity and Failure in Nanocrystalline BCC Metals via MD Simulation

Advances in the ability to generate extremely high pressures in dynamic experiments such as at the National Ignition Facility has motivated the need for special materials optimized for those conditions as well as ways to probe the response of these materials as they are deformed. We need to develop a much deeper understanding of the behavior of materials subjected to high pressure, especially the effect of rate at the extremely high rates encountered in those experiments. Here we use large-scale molecular dynamics (MD) simulations of the high-rate deformation of nanocrystalline tantalum at pressures less than 100 GPa to investigate the processes associated with plastic deformation for strains up to 100%. We focus on 3D polycrystalline systems with typical grain sizes of 10-20 nm. We also study a rapidly quenched liquid (amorphous solid) tantalum. We apply a constant volume (isochoric), constant temperature (isothermal) shear deformation over a range of strain rates, and compute the resulting stress-strain curves to large strains for both uniaxial and biaxial compression. We study the rate dependence and identify plastic deformation mechanisms. The identification of the mechanisms is facilitated through a novel technique that computes the local grain orientation, returning it as a quaternion for each atom. …
Date: February 12, 2010
Creator: Rudd, R E
System: The UNT Digital Library
Mask roughness induced LER: a rule of thumb -- paper (open access)

Mask roughness induced LER: a rule of thumb -- paper

Much work has already been done on how both the resist and line-edge roughness (LER) on the mask affect the final printed LER. What is poorly understood, however, is the extent to which system-level effects such as mask surface roughness, illumination conditions, and defocus couple to speckle at the image plane, and currently factor into LER limits. Here, we propose a 'rule-of-thumb' simplified solution that provides a fast and powerful method to obtain mask roughness induced LER. We present modeling data on an older generation mask with a roughness of 230 pm as well as the ultimate target roughness of 50 pm. Moreover, we consider feature sizes of 50 nm and 22 nm, and show that as a function of correlation length, the LER peaks at the condition that the correlation length is approximately equal to the resolution of the imaging optic.
Date: March 12, 2010
Creator: McClinton, Brittany & Naulleau, Patrick
System: The UNT Digital Library
Development of stripper options for FRIB (open access)

Development of stripper options for FRIB

The US Department of Energy Facility for Rare Isotope Beams (FRIB) at Michigan State University includes a heavy ion superconducting linac capable of accelerating all ions up to uranium with energies higher than 200 MeV/u and beam power up to 400 kW. To achieve these goals with present ion source performance it is necessary to accelerate simultaneously two charge states of uranium from the ion source in the first section of the linac. At an energy of approximately 16.5 MeV/u it is planned to strip the uranium beam to reduce the voltage needed in the rest of the linac to achieve the final energy. Up to five different charge states are planned to be accelerated simultaneously after the stripper. The design of the stripper is a challenging problem due to the high power deposited (approximately 0.7 kW) in the stripper media by the beam in a small spot. To assure success of the project we have established a research and development program that includes several options: carbon or diamond foils, liquid lithium films, gas strippers and plasma strippers. We present in this paper the status of the different options.
Date: September 12, 2010
Creator: Marti, F.; Hershcovitch, A.; Momozaki, Y.; Nolen, J.; Reed, C. & Thieberger, P.
System: The UNT Digital Library
Atmospheric Effects on the Performance of Cdznte Single Crystal Detectors (open access)

Atmospheric Effects on the Performance of Cdznte Single Crystal Detectors

The production of high-quality ternary single-crystal materials for radiation detectors has progressed over the past 15 years. One of the more common materials being studied is CdZnTe (CZT), which can be grown using several methods to produce detector-grade materials. The work presented herein examines the effects of environmental conditions including temperature and humidity on detector performance [full-width at half-maximum (FWHM)] using the single pixel with guard detector configuration. The effects of electrical probe placement, reproducibility, and aging are also presented.
Date: May 12, 2010
Creator: Washington, A.; Duff, M. & Teague, L.
System: The UNT Digital Library
Particle removal challenges with EUV patterned mask for the sub-22nm HP node (open access)

Particle removal challenges with EUV patterned mask for the sub-22nm HP node

The particle removal efficiency (PRE) of cleaning processes diminishes whenever the minimum defect size for a specific technology node becomes smaller. For the sub-22 nm half-pitch (HP) node, it was demonstrated that exposure to high power megasonic up to 200 W/cm{sup 2} did not damage 60 nm wide TaBN absorber lines corresponding to the 16 nm HP node on wafer. An ammonium hydroxide mixture and megasonics removes {ge}50 nm SiO{sub 2} particles with a very high PRE, A sulfuric acid hydrogen peroxide mixture (SPM) in addition to ammonium hydroxide mixture (APM) and megasonic is required to remove {ge}28 nm SiO{sub 2} particles with a high PRE. Time-of-flight secondary ion mass spectroscopy (TOFSIMS) studies show that the presence of O{sub 2} during a vacuum ultraviolet (VUV) ({lambda} = 172 nm) surface conditioning step will result in both surface oxidation and Ru removal, which drastically reduce extreme ultraviolet (EUV) mask life time under multiple cleanings. New EUV mask cleaning processes show negligible or no EUV reflectivity loss and no increase in surface roughness after up to 15 cleaning cycles. Reviewing of defect with a high current density scanning electron microscope (SEM) drastically reduces PRE and deforms SiO{sub 2} particles. 28 nm SiO{sub …
Date: March 12, 2010
Creator: Rastegar, A.; Eichenlaub, S.; Kadaksham, A. J.; Lee, B.; House, M.; Huh, S. et al.
System: The UNT Digital Library
Photon flux requirements for EUV reticle imaging microscopy in the 22 and 16 nm nodes (open access)

Photon flux requirements for EUV reticle imaging microscopy in the 22 and 16 nm nodes

EUV-wavelength actinic microscopy yields detailed information about EUV mask patterns, architectures, defects, and the performance of defect repair strategies, without the complications of photoresist imaging. The measured aerial image intensity profiles provide valuable feedback to improve mask and lithography system modeling methods. In order to understand the photon-flux-dependent pattern measurement limits of EUV mask-imaging microscopy, we have investigated the effects of shot noise on aerial image linewidth measurements for lines in the 22 and 16-nm generations. Using a simple model of image formation near the resolution limit, we probe the influence of photon shot noise on the measured, apparent line roughness. With this methodology, we arrive at general flux density requirements independent of the specific EUV microscope configurations. Analytical and statistical analysis of aerial image simulations in the 22 and 16-nm generations reveal the trade-offs between photon energy density (controllable with exposure time), effective pixel dimension on the CCO (controlled by the microscope's magnification ratio), and image log slope (ILS). We find that shot-noise-induced linewidth roughness (LWR) varies imersely with the square root of the photon energy density, and is proportional to the imaging magnification ratio. While high magnification is necessary for adequate spatial resolution, for a given flux density, …
Date: March 12, 2010
Creator: Wintz, D.; Goldberg, K. A.; Mochi, I. & Huh, S.
System: The UNT Digital Library
A new medium energy beam transport line for the proton injector of AGS-RHIC (open access)

A new medium energy beam transport line for the proton injector of AGS-RHIC

In Brookhaven National Laboratory (BNL), a 750 keV medium energy beam transport line between the 201 MHz 750 keV proton RFQ and the 200 MeV Alvarez DTL is being modified to get a better transmission of the beam. Within a tight space, high field gradient quadrupoles (65 Tm) and newly designed steering magnets (6.5 mm in length) will be installed considering the cross-talk effects. Also a new half wave length 200 MHz buncher is being prepared. The beam commissioning will be done in this year. To enhance the performance of the proton linacs, the MEBT is being modified. New quadrupole magnets, steering magnets and a half wave length buncher as shown in Figure 7 will be installed and be commissioned soon.
Date: September 12, 2010
Creator: Okamura, M.; Briscoe, B.; Fite, J.; LoDestro, V.; Raparia, D.; Ritter, J. et al.
System: The UNT Digital Library
A Comprehensive Analysis of Uncertainties Affecting the Stellar Mass-Halo Mass Relation for 0<z<4 (open access)

A Comprehensive Analysis of Uncertainties Affecting the Stellar Mass-Halo Mass Relation for 0<z<4

We conduct a comprehensive analysis of the relationship between central galaxies and their host dark matter halos, as characterized by the stellar mass - halo mass (SM-HM) relation, with rigorous consideration of uncertainties. Our analysis focuses on results from the abundance matching technique, which assumes that every dark matter halo or subhalo above a specific mass threshold hosts one galaxy. We provide a robust estimate of the SM-HM relation for 0 &lt; z &lt; 1 and discuss the quantitative effects of uncertainties in observed galaxy stellar mass functions (GSMFs) (including stellar mass estimates and counting uncertainties), halo mass functions (including cosmology and uncertainties from substructure), and the abundance matching technique used to link galaxies to halos (including scatter in this connection). Our analysis results in a robust estimate of the SM-HM relation and its evolution from z=0 to z=4. The shape and evolution are well constrained for z &lt; 1. The largest uncertainties at these redshifts are due to stellar mass estimates (0.25 dex uncertainty in normalization); however, failure to account for scatter in stellar masses at fixed halo mass can lead to errors of similar magnitude in the SM-HM relation for central galaxies in massive halos. We also investigate …
Date: May 12, 2010
Creator: Behroozi, Peter S.; Conroy, Charlie & Wechsler, Risa H.
System: The UNT Digital Library
A study of defects on EUV mask using blank inspection, patterned mask inspection, and wafer inspection (open access)

A study of defects on EUV mask using blank inspection, patterned mask inspection, and wafer inspection

The availability of defect-free masks remains one of the key challenges for inserting extreme ultraviolet lithography (EUVL) into high volume manufacturing. yet link data is available for understanding native defects on real masks. In this paper, a full-field EUV mask is fabricated to investigate the printability of various defects on the mask. The printability of defects and identification of their source from mask fabrication to handling were studied using wafer inspection. The printable blank defect density excluding particles and patterns is 0.63 cm{sup 2}. Mask inspection is shown to have better sensitivity than wafer inspection. The sensitivity of wafer inspection must be improved using through-focus analysis and a different wafer stack.
Date: March 12, 2010
Creator: Huh, S.; Ren, L.; Chan, D.; Wurm, S.; Goldberg, K. A.; Mochi, I. et al.
System: The UNT Digital Library
Printability and inspectability of programmed pit defects on teh masks in EUV lithography (open access)

Printability and inspectability of programmed pit defects on teh masks in EUV lithography

Printability and inspectability of phase defects in ELlVL mask originated from substrate pit were investigated. For this purpose, PDMs with programmed pits on substrate were fabricated using different ML sources from several suppliers. Simulations with 32-nm HP L/S show that substrate pits with below {approx}20 nm in depth would not be printed on the wafer if they could be smoothed by ML process down to {approx}1 nm in depth on ML surface. Through the investigation of inspectability for programmed pits, minimum pit sizes detected by KLA6xx, AIT, and M7360 depend on ML smoothing performance. Furthermore, printability results for pit defects also correlate with smoothed pit sizes. AIT results for pattemed mask with 32-nm HP L/S represents that minimum printable size of pits could be {approx}28.3 nm of SEVD. In addition, printability of pits became more printable as defocus moves to (-) directions. Consequently, printability of phase defects strongly depends on their locations with respect to those of absorber patterns. This indicates that defect compensation by pattern shift could be a key technique to realize zero printable phase defects in EUVL masks.
Date: March 12, 2010
Creator: Kang, I. Y.; Seo, H. S.; Ahn, B. S.; Lee, D. G.; Kim, D.; Huh, S. et al.
System: The UNT Digital Library
Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets (open access)

Radiative forcing and temperature response to changes in urban albedos and associated CO2 offsets

The two main forcings that can counteract to some extent the positive forcings from greenhouse gases from pre-industrial times to present-day are the aerosol and related aerosol-cloud forcings, and the radiative response to changes in surface albedo. Here, we quantify the change in radiative forcing and land surface temperature that may be obtained by increasing the albedos of roofs and pavements in urban areas in temperate and tropical regions of the globe by 0.1. Using the catchment land surface model (the land model coupled to the GEOS-5 Atmospheric General Circulation Model), we quantify the change in the total outgoing (outgoing shortwave+longwave) radiation and land surface temperature to a 0.1 increase in urban albedos for all global land areas. The global average increase in the total outgoing radiation was 0.5 Wm{sup -2}, and temperature decreased by {approx}0.008 K for an average 0.003 increase in surface albedo. These averages represent all global land areas where data were available from the land surface model used and are for the boreal summer (June-July-August). For the continental U.S. the total outgoing radiation increased by 2.3 Wm{sup -2}, and land surface temperature decreased by {approx}0.03 K for an average 0.01 increase in surface albedo. Based on …
Date: February 12, 2010
Creator: Menon, Surabi; Akbari, Hashem; Mahanama, Sarith; Sednev, Igor & Levinson, Ronnen
System: The UNT Digital Library
EUV pattern defect detection sensitivity based on aerial image linewidth measurements (open access)

EUV pattern defect detection sensitivity based on aerial image linewidth measurements

As the quality of EUV-wavelength mask inspection microscopes improves over time, the image properties and intensity profiles of reflected light can be evaluated in ever-greater detail. The SEMATECH Berkeley Actinic Inspection Tool (AIT) is one such microscope, featuring mask resolution values that match or exceed those available through lithographic printing in current photoresists. In order to evaluate the defect detection sensitivity of the AIT for dense line patterns on typical masks, the authors study the line width roughness (LWR) on two masks, as measured in the EUV images. They report the through-focus and pitch dependence of contrast, image log slope, linewidth, and LWR. The AIT currently reaches LWR 3{sigma} values close to 9 nm for 175 nm half-pitch lines. This value is below 10% linewidth for nearly all lines routinely measured in the AIT. Evidence suggests that this lower level may arise from the mask's inherent pattern roughness. While the sensitivity limit of the AlT has not yet been established, it is clear that the AIT has the required sensitivity to detect defects that cause 10% linewidth changes in line sizes of 125 nm and larger.
Date: February 12, 2010
Creator: Goldberg, K. A.; Mochi, I.; Naulleau, P.; Liang, T.; Yan, P.-Y. & Huh, S.
System: The UNT Digital Library
Actinic imaging of native and programmed defects on a full-field mask (open access)

Actinic imaging of native and programmed defects on a full-field mask

We describe the imaging and characterization of native defects on a full field extreme ultraviolet (EUV) mask, using several reticle and wafer inspection modes. Mask defect images recorded with the SEMA TECH Berkeley Actinic Inspection Tool (AIT), an EUV-wavelength (13.4 nm) actinic microscope, are compared with mask and printed-wafer images collected with scanning electron microscopy (SEM) and deep ultraviolet (DUV) inspection tools. We observed that defects that appear to be opaque in the SEM can be highly transparent to EUV light, and inversely, defects that are mostly transparent to the SEM can be highly opaque to EUV. The nature and composition of these defects, whether they appear on the top surface, within the multilayer coating, or on the substrate as buried bumps or pits, influences both their significance when printed, and their detectability with the available techniques. Actinic inspection quantitatively predicts the characteristics of printed defect images in ways that may not be possible with non-EUV techniques. As a quantitative example, we investigate the main structural characteristics of a buried pit defect based on EUV through-focus imaging.
Date: March 12, 2010
Creator: Mochi, I.; Goldberg, K. A.; Fontaine, B. La; Tchikoulaeva, A. & Holfeld, C.
System: The UNT Digital Library
Radiochemical tracers as a mix diagnostic for the ignition double-shell capsule (open access)

Radiochemical tracers as a mix diagnostic for the ignition double-shell capsule

One of the most important challenges confronting laser-driven capsule implosion experiments will be a quantitative evaluation of the implosion dynamics. Since these experiments will encounter extreme conditions of pressure and temperature, establishing robust, sensitive diagnostics will be difficult. Radiochemical signatures provide insight into material mixing and laser drive asymmetry and complement x-ray and other nuclear diagnostics, since the relevant nuclear reactions sample core implosion conditions directly. Simulations of an ignition double shell target indicate that several experimentally accessible isomeric ratios will be suitable monitors of mix.
Date: May 12, 2010
Creator: Colvin, J; Cerjan, C; Hoffman, R; Stoyer, M A & Amendt, P
System: The UNT Digital Library
Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat (open access)

Measured Black Carbon Deposition on the Sierra Nevada Snow Pack and Implication for Snow Pack Retreat

Modeling studies show that the darkening of snow and ice by black carbon deposition is a major factor for the rapid disappearance of arctic sea ice, mountain glaciers and snow packs. This study provides one of the first direct measurements for the efficient removal of black carbon from the atmosphere by snow and its subsequent deposition to the snow packs of California. The early melting of the snow packs in the Sierras is one of the contributing factors to the severe water problems in California. BC concentrations in falling snow were measured at two mountain locations and in rain at a coastal site. All three stations reveal large BC concentrations in precipitation, ranging from 1.7 ng/g to 12.9 ng/g. The BC concentrations in the air after the snow fall were negligible suggesting an extremely efficient removal of BC by snow. The data suggest that below cloud scavenging, rather than ice nuclei, was the dominant source of BC in the snow. A five-year comparison of BC, dust, and total fine aerosol mass concentrations at multiple sites reveals that the measurements made at the sampling sites were representative of large scale deposition in the Sierra Nevada. The relative concentration of iron and …
Date: January 12, 2010
Creator: Hadley, Odelle L.; C.E., Corrigan; T. W., Kirchstetter; Cliff, S. S. & Ramanathan, V.
System: The UNT Digital Library