The ^2H(e,e'p)n Reaction at High Four-Momentum Transfer (open access)

The ^2H(e,e'p)n Reaction at High Four-Momentum Transfer

This dissertation presents the highest four-momentum transfer, Q^2,quasielastic (x_Bj = 1) results from Experiment E01-020 which systematically explored the 2He(e,e'p)n reaction ("Electro-disintegration" of the deuteron) at three different four-momentum transfers, Q^2 = 0.8, 2.1, and 3.5 GeV^2 and missing momenta, P_miss = 0, 100, 200, 300, 400, and 500 GeV including separations of the longitudinal-transverse interference response function, R_LT, and extractoin of the longitudinal-transverse asymmetry, A_LT. This systematic approach will help to understand the reaction mechanism and the deuteron structure down to the short range part of the nucleon-nucleon interaction which is one of the fundamental missions of nuclear physics. By studying the very short distance structure of the deuteron, one may also determine whether or to what extent the description of nuclei in terms of nucleon/meson degrees of freedom must be supplemented by inclusion of explicit quark effects. The unique combination of energy, current, duty factor, and control of systematics for Hall A at Jefferson Lab made Jefferson Lab the only facility in the world where these systematic studies of the deuteron can be undertaken. This is especially true when we want to understand the short range structure of the deuteron where high energies and high luminosity/duty factor are …
Date: December 31, 2006
Creator: Ibrahim, Hassan
System: The UNT Digital Library
Implementation of the Immersed Boundary Method in the Weather Research and Forecasting model (open access)

Implementation of the Immersed Boundary Method in the Weather Research and Forecasting model

Accurate simulations of atmospheric boundary layer flow are vital for predicting dispersion of contaminant releases, particularly in densely populated urban regions where first responders must react within minutes and the consequences of forecast errors are potentially disastrous. Current mesoscale models do not account for urban effects, and conversely urban scale models do not account for mesoscale weather features or atmospheric physics. The ultimate goal of this research is to develop and implement an immersed boundary method (IBM) along with a surface roughness parameterization into the mesoscale Weather Research and Forecasting (WRF) model. IBM will be used in WRF to represent the complex boundary conditions imposed by urban landscapes, while still including forcing from regional weather patterns and atmospheric physics. This document details preliminary results of this research, including the details of three distinct implementations of the immersed boundary method. Results for the three methods are presented for the case of a rotation influenced neutral atmospheric boundary layer over flat terrain.
Date: December 7, 2006
Creator: Lundquist, K A
System: The UNT Digital Library
Measurement of the inclusive jet cross section using the midpoint algorithm in Run II at CDF (open access)

Measurement of the inclusive jet cross section using the midpoint algorithm in Run II at CDF

A measurement is presented of the inclusive jet cross section using the Midpoint jet clustering algorithm in five different rapidity regions. This is the first analysis which measures the inclusive jet cross section using the Midpoint algorithm in the forward region of the detector. The measurement is based on more than 1 fb{sup -1} of integrated luminosity of Run II data taken by the CDF experiment at the Fermi National Accelerator Laboratory. The results are consistent with the predictions of perturbative quantum chromodynamics.
Date: December 1, 2006
Creator: Group, Robert Craig
System: The UNT Digital Library
New Synthetic Methods for Hypericum Natural Products (open access)

New Synthetic Methods for Hypericum Natural Products

Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.
Date: December 12, 2006
Creator: Jeon, Insik
System: The UNT Digital Library
Phase Transformation in Cast Superaustenitic Stainless Steels (open access)

Phase Transformation in Cast Superaustenitic Stainless Steels

Superaustenitic stainless steels constitute a group of Fe-based alloys that are compositionally balanced to have a purely austenitic matrix and exhibit favorable pitting and crevice corrosion resistant properties and mechanical strength. However, intermetallic precipitates such as sigma and Laves can form during casting or exposure to high-temperature processing, which degrade the corrosion and mechanical properties of the material. The goal of this study was to accurately characterize the solid-solid phase transformations seen in cast superaustenitic stainless steels. Heat treatments were performed to understand the time and temperature ranges for intermetallic phase formations in alloys CN3MN and CK3MCuN. Microstructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy and wavelength dispersive spectroscopy (EDS, WDS). The equilibrium microstructures, composed primarily of sigma and Laves within purely austenitic matrices, showed slow transformation kinetics. Factors that determine the extent of transformation, including diffusion, nucleation, and growth, are discussed.
Date: December 12, 2006
Creator: Phillips, Nathaniel Steven Lee
System: The UNT Digital Library
Resonant second generation slepton production at the Tevatron (open access)

Resonant second generation slepton production at the Tevatron

None
Date: December 1, 2006
Creator: Autermann, Christian Tobias
System: The UNT Digital Library
Measurement of the t-tbar production cross section in p-pbar collisions at s**(1/2) = 1.96 TeV using lepton+jets events in the CDF detector at Fermilab (open access)

Measurement of the t-tbar production cross section in p-pbar collisions at s**(1/2) = 1.96 TeV using lepton+jets events in the CDF detector at Fermilab

The top quark is the most massive fundamental particle observed so far, and the study of its properties is interesting for several reasons ranging from its possible special role in electroweak symmetry breaking to its sensitivity to physics beyond the standard model (SM). In particular, the measurement of the top quark pair production cross section {sigma}{sub t{bar t}} is of interest as a test of QCD predictions. Recent QCD calculations done with perturbation theory to next-to-leading order predict {sigma}{sub t{bar t}} with an uncertainty of less than 15%, which motivate measurements of comparable precision. In this thesis, the author reports a measurement of the cross section for pair production of top quarks in the lepton+jets channel in 318 pb{sup -1} of p{bar p} collision data at {radical}s = 1.96 TeV. The data were recorded between March 2002 and September 2004, during Run II of the Tevatron, by the CDF II detector, a general purpose detector which combines charged particle trackers, sampling calorimeters, and muon detectors. processes in which a W boson is produced in association with several jets with large transverse momentum can be misidentified at t{bar t}, since they have the same signature. In order to separate the t{bar …
Date: December 1, 2006
Creator: Palencia, Enrique
System: The UNT Digital Library
Novel Aryne Chemistry in Organic Synthesis (open access)

Novel Aryne Chemistry in Organic Synthesis

Arynes are among the most intensively studied systems in chemistry. However, many aspects of the chemistry of these reactive intermediates are not well understood yet and their use as reagents in synthetic organic chemistry has been somewhat limited, due to the harsh conditions needed to generate arynes and the often uncontrolled reactivity exhibited by these species. Recently, o-silylaryl triflates, which can generate the corresponding arynes under very mild reaction conditions, have been found very useful in organic synthesis. This thesis describes several novel and useful methodologies by employing arynes, which generate from o-silylaryl triflates, in organic synthesis. An efficient, reliable method for the N-arylation of amines, sulfonamides and carbamates, and the O-arylation of phenols and carboxylic acids is described in Chapter 1. Amines, sulfonamides, phenols, and carboxylic acids are good nucleophiles, which can react with arynes generated from a-silylaryl triflates to afford the corresponding N- and O-arylated products in very high yields. The regioselectivity of unsymmetrical arynes has also been studied. A lot of useful, functional groups can tolerate our reaction conditions. Carbazoles and dibenzofurans are important heteroaromatic compounds, which have a variety of biological activities. A variety of substituted carbazoles and dibenzofwans are readily prepared in good to excellent …
Date: December 12, 2006
Creator: Liu, Zhijian
System: The UNT Digital Library
Search for 3rd Generation Vector Leptoquarks in the Di-tau Di-jet Channel in Proton Antiproton Collisions at square root s = 1.96 TeV (open access)

Search for 3rd Generation Vector Leptoquarks in the Di-tau Di-jet Channel in Proton Antiproton Collisions at square root s = 1.96 TeV

We search for third generation vector leptoquarks (V LQ3) produced in colliding p{bar p} beams operating at {radical}s = 1.96 TeV at the CDF experiment in Run II of the Fermilab Tevatron. We use 322 pb{sup -1} of data to search for the V LQ3 signal in the di-tau plus di-jet channel. For the first time, the full matrix element is used in the Monte Carlo simulation of this signal. With no events observed in the signal region, we set a 95% C.L. upper limit on the V LQ3 pair production cross section of {sigma} < 344fb, assuming Yang-Mills couplings and Br(V LQ3 {yields} b{tau}) = 1, and a lower limit on the V LQ3 mass of m{sub V LQ3} > 317 GeV=c{sup 2}. If theoretical uncertainties on the cross section are applied in the least favorable manner the results are {sigma} < 360fb and m{sub V LQ3} > 294 GeV=c{sup 2}. The Minimal coupling V LQ3 result is an upper limit on the cross section of {sigma} < 493fb ({sigma} < 610fb) and the lower limit on the mass is m{sub V LQ3} > 251 GeV=c{sup 2} (m{sub V LQ3} > 223 GeV=c{sup 2}) for the nominal (1{sigma} varied) …
Date: December 1, 2006
Creator: Forrester, Stanley Scott
System: The UNT Digital Library
A measurement of the top quark mass with a matrix element method (open access)

A measurement of the top quark mass with a matrix element method

The authors present a measurement of the mass of the top quark. The event sample is selected from proton-antiproton collisions, at 1.96 TeV center-of-mass energy, observed with the CDF detector at Fermilab's Tevatron. They consider a 318 pb{sup -1} dataset collected between March 2002 and August 2004. They select events that contain one energetic lepton, large missing transverse energy, exactly four energetic jets, and at least one displaced vertex b tag. The analysis uses leading-order t{bar t} and background matrix elements along with parameterized parton showering to construct event-by-event likelihoods as a function of top quark mass. From the 63 events observed with the 318 pb{sup -1} dataset they extract a top quark mass of 172.0 {+-} 2.6(stat) {+-} 3.3(syst) GeV/c{sup 2} from the joint likelihood. The mean expected statistical uncertainty is 3.2 GeV/c{sup 2} for m{sub t} = 178 GTeV/c{sup 2} and 3.1 GeV/c{sup 2} for m{sub t} = 172.5 GeV/c{sup 2}. The systematic error is dominated by the uncertainty of the jet energy scale.
Date: December 1, 2006
Creator: Gibson, Adam Paul
System: The UNT Digital Library
Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses (open access)

Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses

This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M{sub 2}S + (0.1 Ga{sub 2}S{sub 3} + 0.9 GeS{sub 2}) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga{sub 2}S{sub 3} + 0.9 GeS{sub 2} was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M{sub 2}S + (0.1Ga{sub 2}S{sub 3} + 0.9 GeS{sub 2}) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. …
Date: December 12, 2006
Creator: Yao, Wenlong
System: The UNT Digital Library
First search at CDF for the Higgs boson decaying to a W-boson pair in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV (open access)

First search at CDF for the Higgs boson decaying to a W-boson pair in proton-antiproton collisions at the center-of-mass energy of 1.96 TeV

By way of retaining the gauge invariance of the Standard Model (SM) and giving masses to the W{sup {+-}} and Z{sup 0} bosons and the fermions, the Higgs mechanism predicts the existence of a neutral scalar bosonic particle, whose mass is not exactly known. The Higgs boson is the only experimentally unconfirmed SM particle to date. This thesis documents a search for the Higgs boson in p{bar p} collisions at {radical}s = 1.96 TeV at the Tevatron, using 360 {+-} pb {sup -1} data collected by the Run II Collider Detector at Fermilab (CDF II), as part of the most important quest for contemporary particle physicists. The search was for a Higgs boson decaying to a pair of W{sup {+-}} bosons, where each W boson decays to an electron, a muon or a tau that further decays to an electron or a muon with associated neutrinos. Events with two charged leptons plus large missing energy were selected in data triggered on a high p{sub t} lepton and compared to the signal and backgrounds modeled using Monte Carlo and jet data. No signal-like excess was observed in data. Therefore, upper limits on the HWW production cross-section in the analyzed mass range …
Date: December 1, 2006
Creator: Chuang, Shan-Huei S.
System: The UNT Digital Library
Mechanisms for fatigue and wear of polysilicon structural thinfilms (open access)

Mechanisms for fatigue and wear of polysilicon structural thinfilms

Fatigue and wear in micron-scale polysilicon structural films can severely impact the reliability of microelectromechanical systems (MEMS). Despite studies on fatigue and wear behavior of these films, there is still an on-going debate regarding the precise physical mechanisms for these two important failure modes. Although macro-scale silicon does not fatigue, this phenomenon is observed in micron-scale silicon. It is shown that for polysilicon devices fabricated in the MUMPs foundry and SUMMiT process stress-lifetime data exhibits similar trends in ambient air, shorter lifetimes in higher relative humidity environments and no fatigue failure at all in high vacuum. Transmission electron microscopy of the surface oxides of the samples show an approximate four-fold thickening of the oxide at stress concentrations after fatigue failure, but no thickening after fracture in air or after fatigue cycling in vacuo. It is found that such oxide thickening and fatigue failure (in air) occurs in devices with initial oxide thicknesses of {approx}4-20 nm. Such results are interpreted and explained by a reaction layer fatigue mechanism; specifically, moisture-assisted subcritical cracking within a cyclic stress-assisted thickened oxide layer occurs until the crack reaches a critical size to cause catastrophic failure. Polysilicon specimens from the SUMMiT process are used to study …
Date: December 1, 2006
Creator: Alsem, Daniel Henricus
System: The UNT Digital Library
Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory (open access)

Exploration of deeply virtual Compton scattering on the neutron in the Hall A of Jefferson Laboratory

Generalized Parton Distributions (GPDs) are universal functions which provide a comprehensive description of hadron properties in terms of quarks and gluons. Deeply Virtual Compton Scattering (DVCS) is the simplest hard exclusive process involving GPDs. In particular, the DVCS on the neutron is mostly sensitive to E, the less constrained GPD, wich allows to access to the quark angular momentum. The first dedicated DVCS experiment on the neutron ran in the Hall A of Jefferson Lab in fall 2004. The high luminosity of the experiment and the resulting background rate recquired specific devices which are decribed in this document. The analysis methods and the experiment results, leading to preliminary constraints on the GPD E, are presented.
Date: December 8, 2006
Creator: Mazouz, Malek
System: The UNT Digital Library
Oxidations of Organic and Inorganic Substrates by Superoxo-, hydroperoxo-, and oxo-compounds of the transition metals. (open access)

Oxidations of Organic and Inorganic Substrates by Superoxo-, hydroperoxo-, and oxo-compounds of the transition metals.

Chapters 1 and 2 dealt with the chemistry of superoxo-, hydroperoxo-, and oxo- complexes of chromium, rhodium and cobalt. Chapter 3 dealt with the mechanism of oxygen-atom transfer catalyzed by an oxo-complex of rhenium. In Chapter 1, it was shown that hydroperoxometal complexes of cobalt and rhodium react with superoxochromium and chromyl ions, generating reduced chromium species while oxidizing the hydroperoxometal ions to their corresponding superoxometal ions. It was shown that the chromyl and superoxochromium ions are the more powerful oxidants. Evidence supports hydrogen atom transfer from the hydroperoxometal ion to the oxidizing superoxochromium or chromyl ion as the reaction mechanism. There is a significant H/D kinetic isotope effect. Comparisons to the rate constants of other known hydrogen atom transfer reactions show the expected correlation with bond dissociation energies. In Chapter 2, it was found that the superoxometal complexes Cr{sub aq}OO{sup 2+} and Rh(NH{sub 3}){sub 4}(H{sub 2}O)OO{sup 2+} oxidize stable nitroxyl radicals of the TEMPO series with rate constants that correlate with the redox potentials of both the oxidant and reductant. These reactions fit the Marcus equation for electron transfer near the theoretical value. Acid catalysis is important to the reaction, especially the thermodynamically limited cases involving Rh(NH{sub 3}){sub 4}(H{sub …
Date: December 12, 2006
Creator: Vasbinder, Michael John
System: The UNT Digital Library
Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys (open access)

Mechanistic Selection and Growth of Twinned Bicrystalline Primary Si in Near Eutectic Al-Si Alloys

Morphological evolution and selection of angular primary silicon is investigated in near-eutectic Al-Si alloys. Angular silicon arrays are grown directionally in a Bridgman furnace at velocities in the regime of 10{sup -3} m/sec and with a temperature gradient of 7.5 x 10{sup 3} K/m. Under these conditions, the primary Si phase grows as an array of twinned bicrystalline dendrites, where the twinning gives rise to a characteristic 8-pointed star-shaped primary morphology. While this primary Si remains largely faceted at the growth front, a complex structure of coherent symmetric twin boundaries enables various adjustment mechanisms which operate to optimize the characteristic spacings within the primary array. In the work presented here, this primary silicon growth morphology is examined in detail. In particular, this thesis describes the investigation of: (1) morphological selection of the twinned bicrystalline primary starshape morphology; (2) primary array behavior, including the lateral propagation of the starshape grains and the associated evolution of a strong <100> texture; (3) the detailed structure of the 8-pointed star-shaped primary morphology, including the twin boundary configuration within the central core; (4) the mechanisms of lateral propagation and spacing adjustment during array evolution; and (5) the thermosolutal conditions (i.e. operating state) at the primary …
Date: December 12, 2006
Creator: Jung, Choonho
System: The UNT Digital Library
A measurement of the top-antitop production cross section in the dimuon final state with the D0 detector for proton-antiproton collisions as s**(1/2) = 1.96 TeV (open access)

A measurement of the top-antitop production cross section in the dimuon final state with the D0 detector for proton-antiproton collisions as s**(1/2) = 1.96 TeV

A measurement of the top pair production cross section in the dimuon final state for proton-antiproton collisions at ps = 1:96 TeV is presented. Approximately 420 pb{sup -1} of data collected with the Run II D{O} detector are used for this measurement. Two data events are observed with a total expected signal plus background yield of 3.6 events. Assuming a top mass of 175 GeV, the measured cross section is: {sigma}{sub {bar u}} = 3.13{sup +4.17}{sub -2.60}(stat){sup +0.92}{sub -0.86}(sys){+-}0.19(lumi)pb, which is consistent with a NNLO prediction of 6.77 {+-} 0.42 pb.
Date: December 1, 2006
Creator: Burke, Susan Elizabeth
System: The UNT Digital Library
On the Mechanical Properties and Microstructure of Nitinol forBiomedical Stent Applications (open access)

On the Mechanical Properties and Microstructure of Nitinol forBiomedical Stent Applications

This dissertation was motivated by the alarming number of biomedical device failures reported in the literature, coupled with the growing trend towards the use of Nitinol for endovascular stents. The research is aimed at addressing two of the primary failure modes in Nitinol endovascular stents: fatigue-crack growth and overload fracture. The small dimensions of stents, coupled with their complex geometries and variability among manufacturers, make it virtually impossible to determine generic material constants associated with specific devices. Instead, the research utilizes a hybrid of standard test techniques (fracture mechanics and x-ray micro-diffraction) and custom-designed testing apparatus for the determination of the fracture properties of specimens that are suitable representations of self-expanding Nitinol stents. Specifically, the role of texture (crystallographic alignment of atoms) and the austenite-to-martensite phase transformation on the propagation of cracks in Nitinol was evaluated under simulated body conditions and over a multitude of stresses and strains. The results determined through this research were then used to create conservative safe operating and inspection criteria to be used by the biomedical community for the determination of specific device vulnerability to failure by fracture and/or fatigue.
Date: December 15, 2006
Creator: Robertson, Scott W.
System: The UNT Digital Library
Single Molecule Screening of Disease DNA Without Amplification (open access)

Single Molecule Screening of Disease DNA Without Amplification

The potential of single molecule detection as an analysis tool in biological and medical fields is well recognized today. This fast evolving technique will provide fundamental sensitivity to pick up individual pathogen molecules, and therefore contribute to a more accurate diagnosis and a better chance for a complete cure. Many studies are being carried out to successfully apply this technique in real screening fields. In this dissertation, several attempts are shown that have been made to test and refine the application of the single molecule technique as a clinical screening method. A basic applicability was tested with a 100% target content sample, using electrophoretic mobility and multiple colors as identification tools. Both electrophoretic and spectral information of individual molecule were collected within a second, while the molecule travels along the flow in a capillary. Insertion of a transmission grating made the recording of the whole spectrum of a dye-stained molecule possible without adding complicated instrumental components. Collecting two kinds of information simultaneously and combining them allowed more thorough identification, up to 98.8% accuracy. Probing mRNA molecules with fluorescently labeled cDNA via hybridization was also carried out. The spectral differences among target, probe, and hybrid were interpreted in terms of dispersion …
Date: December 12, 2006
Creator: Lee, Ji-Young
System: The UNT Digital Library
Nanocrystal Solar Cells (open access)

Nanocrystal Solar Cells

This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.
Date: December 15, 2006
Creator: Gur, Ilan
System: The UNT Digital Library
Habilitation Thesis on STT and Higgs searches in WH Rroduction (open access)

Habilitation Thesis on STT and Higgs searches in WH Rroduction

The detector of the D0 experiment at the proton anti-proton collider Tevatron in Run II is discussed in detail. The performance of the collider and the experiment is presented. Standard model Higgs searches with integrated luminosities between 260 pb{sup -1} and 950 pb{sup -1} and their combination are performed. No deviation from SM background expectation has been observed. Sensitivity prospects at the Tevatron are shown.
Date: December 1, 2006
Creator: Sonnenschein, Lars
System: The UNT Digital Library
Search for Higgs boson production in proton-antiproton collisions at s**(1/2) = 1.96 TeV (open access)

Search for Higgs boson production in proton-antiproton collisions at s**(1/2) = 1.96 TeV

We performed a search for Standard Model Higgs boson production in association with W boson (p{bar p} {yields} W{sup {+-}}H {yields} {ell}{nu}b{bar b}) in p{bar p} collisions at {radical}s = 1.96 TeV. The search uses the data collected between February 2002 and February 2006 at Collider Detector at Fermilab (CDF), which corresponds to an integrated luminosity of about 1 fb{sup -1}. The experimental final state of WH {yields} {ell}{nu}b{bar b} process is lepton (e{sup {+-}}/{mu}{sup {+-}}), missing transverse energy and two jets. The largest background in lepton+jets events is W+light flavor process, therefore the identification of jets as b-jets reduces this kind of background significantly. We used displaced SECondary VerTeX b-tagging (SECVTX) technique, which utilizes the signature that b-jets have secondary vertex displaced away from primary vertex because of the long life time of B-mesons. However, there is still much contamination in SECVTX b-tagged jets. Finite resolution of secondary vertex tracking measurements results in false tags, and c-jets are also identified as b-jets due to the long life time of D-mesons frequently. For the purpose of increasing the purity of the SECVTX b-tagged jets, we applied Neural Network to SECVTX tagged jets for the first time by using secondary vertex …
Date: December 1, 2006
Creator: Kusakabe, Yoshiaki & U., /Waseda
System: The UNT Digital Library
Synthesis and Manipulation of Semiconductor Nanocrystals in Microfluidic Reactors (open access)

Synthesis and Manipulation of Semiconductor Nanocrystals in Microfluidic Reactors

Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time …
Date: December 19, 2006
Creator: Chan, Emory Ming-Yue
System: The UNT Digital Library