Experience with performance based training of nuclear criticality safety engineers (open access)

Experience with performance based training of nuclear criticality safety engineers

Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i`s incompletely developed in some areas. Details of this analysis are provided in this report.
Date: December 20, 1993
Creator: Taylor, R. G.
Object Type: Article
System: The UNT Digital Library
Recovery and recycling of limestone in LEC flue gas desulfurization. Final report, third year (open access)

Recovery and recycling of limestone in LEC flue gas desulfurization. Final report, third year

A potentially attractive flue gas desulfurization method called Limestone Emission Control (LEC) is currently being investigated by Prudich at Ohio University. In this process, beds of 1/8 inch limestone gravel particles absorb sulfur dioxide from flue gas. This forms sulfite and sulfate salts which coat limestone, blinding the surface and limiting utilization to 20%. Favorable economics can be generating when the unreacted portion of the limestone is recovered by mechanical grinding. This project is a wet method for grinding and recovering the spent limestone from the LEC process, utilizing an impeller fluidizer, a new type of slurry processor. It consists of a cylindrical vessel with an impeller at one end. The impeller generates sufficient pressure head to serve as a slurry pump. It combines the operation of wet grinding, washing, and transporting the spent and recovered limestone as an aqueous slurry. The objectives of the first two years were to operate fluidizer in a batch mode to carry grinding experiments, and to determine the removal of the sulfur coatings from the limestone when operating the fluidizer in a continuous mode. The main thrusts of the third year were to complete the grinding data and coordinate the data with reactivity determinations …
Date: December 20, 1993
Creator: Gardner, N. C. & Boo, J. Y.
Object Type: Report
System: The UNT Digital Library