Direct {anti b}b production in {anti p}p collisions at {radical}s = 1.8 TeV (open access)

Direct {anti b}b production in {anti p}p collisions at {radical}s = 1.8 TeV

The first measurement of bottom quark production in the forward detector at CDF is presented in this thesis. Events from the 1988/89 Fermilab collider run were selected with forward muons with nearby jets to form a bottom quark tag. The efficiency and acceptance of the detector are then taken into account and the number of events is turned into a cross section: {sigma}(p{sub t}{sup b} > 20 GeV, 1.9 < {vert_bar}{eta}{sup b}{vert_bar} < 2.5) = (124. {+-} 35. {+-} 76.) nb. The contribution from direct bottom quarks is {sigma}(p{sub t}{sup b} > 20 GeV, p{sub t}{sup {anti b}} > 15 GeV, 1.9 < {vert_bar}{eta}{sup b}{vert_bar} < 2.5) = (100. {+-} 30.{sub {minus}31.}{sup +30.}) nb.
Date: December 31, 1993
Creator: Lamoureux, J.
System: The UNT Digital Library
Effects of modeled terms in the Reynolds-stress transport equations (open access)

Effects of modeled terms in the Reynolds-stress transport equations

A discussion of the origins and interpretation of various previously proposed models for the terms in the incompressible Reynolds-stress equation is given. It is hoped that the interpretations will provoke thoughts that will help in the future modeling of Reynolds-stress transport equations. Different forms of the closed Reynolds-stress equation have been solved numerically for the given mean velocity field of the wake flow behind a flat plate at a Reynolds number of 1000. A finite-difference/finite-volume collocation scheme was used to approximate the spatial derivatives, which were implemented in a time-marching scheme. The numerical time integration produced values for the six independent Reynolds-stress components, the turbulent kinetic energy decay rate, and the turbulent length scale for each of the models tried. The results of the different cases were compared and some conclusions were drawn on the effects of the various investigated modeled terms.
Date: December 31, 1993
Creator: Linn, R.R.
System: The UNT Digital Library
Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media (open access)

Experimental and numerical investigation of shock wave propagation through complex geometry, gas continuous, two-phase media

The work presented here investigates the phenomenon of shock wave propagation in gas continuous, two-phase media. The motivation for this work stems from the need to understand blast venting consequences in the HYLIFE inertial confinement fusion (ICF) reactor. The HYLIFE concept utilizes lasers or heavy ion beams to rapidly heat and compress D-T targets injected into the center of a reactor chamber. A segmented blanket of falling molten lithium or Li{sub 2}BeF{sub 4} (Flibe) jets encircles the reactor`s central cavity, shielding the reactor structure from radiation damage, absorbing the fusion energy, and breeding more tritium fuel. X-rays from the fusion microexplosion will ablate a thin layer of blanket material from the surfaces which face toward the fusion site. This generates a highly energetic vapor, which mostly coalesces in the central cavity. The blast expansion from the central cavity generates a shock which propagates through the segmented blanket - a complex geometry, gas-continuous two-phase medium. The impulse that the blast gives to the liquid as it vents past, the gas shock on the chamber wall, and ultimately the liquid impact on the wall are all important quantities to the HYLIFE structural designers.
Date: December 31, 1993
Creator: Chien-Chih Liu, J.
System: The UNT Digital Library
Interpretation of Seismic Reflection Data from the Piledriver Event Area, Nevada Test Site; A Case Study for Evaluation of... (open access)

Interpretation of Seismic Reflection Data from the Piledriver Event Area, Nevada Test Site; A Case Study for Evaluation of...

A remote sensing geophysical method is needed to properly characterize the void and chimney characteristics of underground nuclear tests. Various techniques were considered and a seismic reflection survey was selected. This survey was then fitted to the conditions at the test site so as to give optimum results. The data was then reduced via DOS computer and analyzed for content. The planned survey using a 50 ft offset did not show any useful information, however, a second survey with a variable longer offset was also conducted which was capable of determining the depth to the top and the bottom of the chimney with reasonable accuracy. Measurements of the horizontal spread of the structure, though, were inconclusive.
Date: December 31, 1993
Creator: Tonander, Karl E.
System: The UNT Digital Library
Measurement of particle speed through optical reflective sensing (open access)

Measurement of particle speed through optical reflective sensing

Two methods determine the speed of 3 m glass spheres using optical reflective sensors embedded in a micro-processor system. The first method, which will be referred to as the one pulse method, is sensitive to particle size and shape. The pulse width of a detected particle is measured and normalized by a shape correction factor resulting in a speed estimate. Three models are developed to correct for effects due to particle shape and light scattering inhomogeneities. The second method, which will be referred to as the two pulse method, measures individual particle velocity components independent of size and shape with two detectors spaced a known distance apart. This distance is divided by the delay between the two detector output pulses to determine speed. A by-product of both methods is a localized particle flux. The microprocessor subsystem automates the pulse detection, timing, velocity calculation and display which are accomplished by the micro-processor subsystem. In the laboratory, a chute is used to generate particle flows with different characteristics. The detection system is tested in the chute for two different flows. A mechanical speed measurement is used for comparison to the one pulse method. The one pulse method is used for comparison to …
Date: December 31, 1993
Creator: McCardle, J.
System: The UNT Digital Library
Phenomenological and mathematical modeling of a high pressure steam driven jet injector. Part 2 (open access)

Phenomenological and mathematical modeling of a high pressure steam driven jet injector. Part 2

An injector is a particular type of jet pump which uses condensable vapor to entrain a liquid and discharge against a pressure higher than either motive or suction pressures. The injector has no moving parts and requires no external power supply nor any complex control system. Thus, the injector is particularly suited for emergency core cooling operations. A detailed survey has indicated that various injector designs are available for operating pressures below 250 psig. However, the design of these injectors from the viewpoint of a basic understanding of heat and mass transfer processes has not been well developed. A critical review of the models showed serious discrepancies between the analytical models and the experimental observations. The discrepancies evolved from the neglect of non-equilibrium aspects of the flow. The origin of the non-equilibrium aspects can be traced to the extremely small time scales governing the flow in the injector. Thus, time scales of the order of 10{sup {minus}2} seconds are involved in the injector, accompanied by mass, momentum, and heat transfer rates of orders of magnitude higher than that observed in conventional two-phase flows. The present study focuses on the phenomenological and mathematical modeling of the processes in the injector from …
Date: December 31, 1993
Creator: Anand, G.
System: The UNT Digital Library
Probabilistic assessment of dynamic system performance. Part 3 (open access)

Probabilistic assessment of dynamic system performance. Part 3

Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safe operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.
Date: December 31, 1993
Creator: Belhadj, M.
System: The UNT Digital Library
Properties of events containing a photon and several jets seen in p{bar p} collisions at {radical}s = 1.8 TeV (open access)

Properties of events containing a photon and several jets seen in p{bar p} collisions at {radical}s = 1.8 TeV

The CDF detector is used to investigate the properties of events containing a photon and two jets. The rate of photon +2 jet production is higher than the theoretical calculation, but the shape of the events agrees with QCD predictions.
Date: December 31, 1993
Creator: Maas, P. A.
System: The UNT Digital Library
A search for first generation scalar leptoquarks at {radical}s = 1.8 TeV with the D0 detector (open access)

A search for first generation scalar leptoquarks at {radical}s = 1.8 TeV with the D0 detector

A search for first generation scalar leptoquarks was done at the DO detector at Fermi National Accelerator Laboratory from 15 pb{minus}1 of data taken during the 1992--1993 colder run. At Fermilab`s p{bar p} collider with a center-of-mass energy of 1.8 TeV, leptoquarks are produced mostly by the strong force in pairs. Leptoquarks carry fractional charge, color, and also lepton and baryon quantum numbers. First generation leptoquarks couple exclusively to the electron, electron neutrino, and the u and d quarks; such a leptoquark would decay into, for example, an electron plus a quark. Signatures for leptoquarks at p{bar p} colliders that have been investigated at DO are two electrons plus two jets and one electron plus missing energy (from an electron neutrino) plus two jets.
Date: December 31, 1993
Creator: Norman, D. M.
System: The UNT Digital Library
Solubilization of pentanol by cationic surfactants and binary mixtures of cationic surfactants (open access)

Solubilization of pentanol by cationic surfactants and binary mixtures of cationic surfactants

The research reported here has included studies of the solubilization of pentanol in hexadecylpyridinium chloride (CPC), trimethyletetradecylammonium chloride (C{sub 14}Cl), benzyldimethyltetradecylammonium chloride (C{sub 14}BzCl), benzyldimethylhexadecylpyridinium chloride (C{sub 16}BzCl), hexadecyltrimethylammonium bromide (CTAB), and binary mixtures of CPC + C{sub 16}BzCl and C{sub 14}Cl + C{sub 14}BzCl. Rather than using calorimetric methods, this project will employ headspace chromatography to measure solubilization of pentanol over a wide range of solute concentrations. While not yielding as much thermodynamic data as calorimetry, headspace chromatography is a more direct measure of the extent of solubilization. Using headspace chromatography, is a more direct measure of the extent of solubilization. Using headspace chromatography, this study will seek to determine whether strongly synergistic mixture ratios exist in the case of binary cationic surfactant systems. There are two equilibria in the pentanol-water-surfactant system: (1) The pentanol solubilized in micelles is in equilibrium with the monomeric pentanol in solution, and (2) the monomeric pentanol is in equilibrium with the pentanol in the vapor above the solution. To establish the link between the two equilibria, a sample of the vapor above pure liquid pentanol must be collected, in order to find the activity of pentanol in solution. Also, a calibration curve for …
Date: December 31, 1993
Creator: Morgan, M. E.
System: The UNT Digital Library
A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation (open access)

A study of the interfacial chemistry of pyrite and coal in fine coal cleaning using flotation

Surface oxidation, surface charge, and flotation properties have been systematically studied for coal, coal-pyrite and ore-pyrite. Electrochemical studies show that coal-pyrite exhibits much higher and more complex surface oxidation than ore-pyrite and its oxidation rate depends strongly on the carbon/coal content. Flotation studies indicate that pyrites have no self-induced floatability. Fuel oil significantly improves the floatability of coal and induces considerable flotation for coal-pyrite due to the hydrophobic interaction of fuel oil with the carbon/coal inclusions on the pyrite surface. Xanthate is a good collector for ore-pyrite but a poor collector for coal and coal-pyrite. The results from thermodynamic calculations, flotation and zeta potential measurements show that iron ions greatly affect the flotation of pyrite with xanthate and fuel oil. Various organic and inorganic chemicals have been examined for depressing coal-pyrite. It was found, for the first time, that sodium pyrophosphate is an effective depressant for coal-pyrite. Solution chemistry shows that pyrophosphate reacts with iron ions to form stable iron pyrophosphate complexes. Using pyrophosphate, the complete separation of pyrite from coal can be realized over a wide pH range at relatively low dosage.
Date: December 31, 1993
Creator: Jiang, C.
System: The UNT Digital Library
The use of micellar solutions for novel separation techniques (open access)

The use of micellar solutions for novel separation techniques

Surfactant based separation techniques based on the solubilization of organic compounds into the nonpolar interior of a micelle or electrostatic attraction of ionized metals and metal complexes to the charged surface of a micelle were studied in this work. Micellar solutions were used to recover two model volatile organic compounds emitted by the printing and painting industries (toluene and amyl acetate) and to investigate the effect of the most important variables in the surfactant enhanced carbon regeneration (SECR) process. SECR for liquid phase applications was also investigated in which the equilibrium adsorption of cetyl pyridinium chloride (CPC) and sodium dodecyl sulfate (SDS) on activated carbon were measured. Micellar-enhanced ultrafiltration (MEUF) was investigated using spiral wound membranes for the simultaneous removal of organic compounds, metals and metal complexes dissolved in water, with emphasis on pollution control applications. Investigations of MEUF to remove 99+ per cent of trichloroethylene (TCE) from contaminated groundwater using criteria such as: membrane flux, solubilization equilibrium constant, surfactant molecular weight, and Krafft temperature led to the selection of an anionic disulfonate with a molecular weight of 642 (DOWFAX 8390). These data and results from supporting experiments were used to design a system which could clean-up water in a …
Date: December 31, 1993
Creator: Roberts, B. L.
System: The UNT Digital Library