Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys (open access)

Anisotropic phase separation through the metal-insulator transition in amorphous Mo-Ge and Fe-Ge alloys

Since an amorphous solid is often defined as that which lacks long-range order, the atomic structure is typically characterized in terms of the high-degree of short-range order. Most descriptions of vapor-deposited amorphous alloys focus on characterizing this order, while assuming that the material is chemically homogeneous beyond a few near neighbors. By coupling traditional small-angle x-ray scattering which probes spatial variations of the electron density with anomalous dispersion which creates a species-specific contrast, one can discern cracks and voids from chemical inhomogeneity. In particular, one finds that the chemical inhomogeneities which have been previously reported in amorphous Fe{sub x}Ge{sub 1-x} and Mo{sub x}Ge{sub 1-x} are quite anisotropic, depending significantly on the direction of film growth. With the addition of small amounts of metal atoms (x<0.2), no films appear isotropic nor homogeneous through the metal/insulator transition. The results indicate that fluctuations in the growth direction play a pivotal role in preventing simple growth models of a columnar structure or one that evolves systematically as it grows. The anomalous scattering measurements identify the metal atoms (Fe or Mo) as the source of the anisotropy, with the Ge atoms distributed homogeneously. The author has developed a method for using these measurements to determine …
Date: December 1, 1993
Creator: Regan, M. J.
System: The UNT Digital Library
Anomalous small angle x-ray scattering studies of amorphous metal-germanium alloys (open access)

Anomalous small angle x-ray scattering studies of amorphous metal-germanium alloys

This dissertation addresses the issue of composition modulation in sputtered amorphous metal-germanium thin films with the aim of understanding the intermediate range structure of these films as a function of composition. The investigative tool used in this work is anomalous small-angle X-ray scattering (ASAXS). The primary focus of this investigation is the amorphous iron-germanium (a-Fe{sub x}Ge{sub 100-x}) system with particular emphasis on the semiconductor-rich regime. Brief excursions are made into the amorphous tungsten-germanium (a-W{sub x}Ge{sub 100-x}) and the amorphous molybdenum-germanium (a-Mo{sub x}Ge{sub 100-x}) systems. All three systems exhibit an amorphous structure over a broad composition range extending from pure amorphous germanium to approximately 70 atomic percent metal when prepared as sputtered films. Across this composition range the structures change from the open, covalently bonded, tetrahedral network of pure a-Ge to densely packed metals. The structural changes are accompanied by a semiconductor-metal transition in all three systems as well as a ferromagnetic transition in the a-Fe{sub x}Ge{sub 100-x} system and a superconducting transition in the a-Mo{sub x}Ge{sub 100-x} system. A long standing question, particularly in the a-Fe{sub x}Ge{sub 100-x} and the a-Mo{sub x}Ge{sub 100-x} systems, has been whether the structural changes (and therefore the accompanying electrical and magnetic transitions) are accomplished …
Date: December 1, 1993
Creator: Rice, M.
System: The UNT Digital Library
Characterization of the sodium void reactivity effect for advanced liquid metal reactor fuels (open access)

Characterization of the sodium void reactivity effect for advanced liquid metal reactor fuels

This report discusses the problems of a large positive sodium void reactivity effect in liquid metal reactors which have received increased attention following the accident at Chernobyl, a light water reactor with a positive coolant void coefficient. While the probability of voiding sodium is small, a large positive sodium void reactivity effect is, in many minds, unacceptable. Analyses were performed on models of an advanced liquid metal reactors to determine the effects fuel type have on the sodium void reactivity effect. Three fuel types were considered; metal, oxide, and nitride. Calculations were performed using three-dimensional, multigroup diffusion theory. Two programs were developed to aid the analyses. One calculated the capture-to-fission ratio and the other calculated reaction rates of selected materials. A one-group equation was derived to determine a theoretical basis for the sodium void reactivity effect. An option was presented for a shortened core having a near-zero sodium-void worth. The effect on the sodium void reactivity effect of using actinides as fuel is also considered.
Date: December 1, 1993
Creator: Kessler, S. F.
System: The UNT Digital Library
Conceptual study of moderately coupled plasmas and experimental comparison of laboratory x-ray sources (open access)

Conceptual study of moderately coupled plasmas and experimental comparison of laboratory x-ray sources

In this thesis the fundamental concepts of moderately coupled plasmas, for which 2{approx_lt}ln{Lambda}{sub b}{approx_lt}10, are, for the first time, presented. This investigation is motivated because neither the conventional Fokker-Planck approximation [for weakly coupled plasmas (ln{Lambda}{sub b}{approx_lt}10)] nor the theory of dielectric response with correlations for strongly coupled plasmas (ln{Lambda}{sub b}{approx_lt}1) has satisfactorily addressed this regime. Specifically, herein the standard Fokker-Planck operator for Coulomb collisions has been modified to include hitherto neglected terms that are directly associated with large-angle scattering. In addition a reduced electron-ion collision operator has been calculated that, for the first time, manifests 1/ln{Lambda}{sub b} corrections. Precise calculations of some relaxation rates and crude calculations of electron transport coefficients have been made. As one of major applications of the modified Fokker-Planck equation, the stopping powers and {rho}R have been calculated for charged fusion products ({alpha}`s, {sup 3}H, {sup 3}He) and hot electrons interacting with plasmas relevant to inertial confinement fusion. In the second major topic of this thesis, advances made in the area of laboratory x-ray sources are presented. First, and most importantly, through the use a Cockcroft-Walton linear accelerator, a charged particle induced x-ray emission (PIXE) source has been developed. Intense line x radiation (including K-, L-, …
Date: December 1993
Creator: Li, C.
System: The UNT Digital Library
The Effect of surface morphology on the friction of Electrogalvanized sheet steel in forming processes (open access)

The Effect of surface morphology on the friction of Electrogalvanized sheet steel in forming processes

The effect in the drawbead simulator test were evaluated for a set of commercially coated steels and a set of laboratory coated steels with underlying surfaces produced by laser textured, shot blast, and electro-discharge textured rolls. In general, surfaces with higher roughness (R{sub a} parameter) measured lower friction in the DBS tests. The requisite roughness amplitude necessary for low friction was moderated somewhat by having a more closely spaced roughness as described by the median wavelength, {lambda}m, of the power spectrum. This effect is due to interaction with the lubricant by the micro-roughness imparted by the galvanizing process. The lubricant tends to be retained better by the surfaces with the micro-roughness, thereby increasing the amount of elasto- and plasto-hydrodynamic support of the load. Other variables, such as large variations in thickness of the sheet can mask the effect of the surface by changing the actual distance of sliding contact during the DBS test. For tests where the amount of sliding is similar, the effect of roughness is significant. The friction measured for EG steels in the DBS test is dominated by deformation of the surface with plowing by the asperities of the tooling adding to that caused by the deformation. …
Date: December 1, 1993
Creator: Skarpelos, P. N.
System: The UNT Digital Library
Extension of the T{sub z} = {minus}3/2, A = 4n + 1 series of beta-delayed proton emitters to {sup 65}Se and {sup 73}Sr, and low energy beta-delayed proton emission from the T{sub z} = {minus}3/2, A = 4n + 3 nucleus {sup 23}Al (open access)

Extension of the T{sub z} = {minus}3/2, A = 4n + 1 series of beta-delayed proton emitters to {sup 65}Se and {sup 73}Sr, and low energy beta-delayed proton emission from the T{sub z} = {minus}3/2, A = 4n + 3 nucleus {sup 23}Al

The series of known Tz = {minus}3/2, A = 4n + 1 nuclei has been extended to include the previously undiscovered isotopes {sup 65}Se and {sup 73}Sr, through the observation of beta-delayed proton emission via the isobaric analog state (IAS) of the beta-daughter (emitter). Due to the relatively large proton energies involved, these experiments were conducted using standard Si-Si {Delta}E-E telescopes. Beta-delayed protons arising from {sup 65}Se have been observed at an energy (laboratory) of 3.55 {plus_minus} 0.03 MeV, corresponding to the decay of the T = 3/2 isobaric analog state in {sup 65}As to the ground state of {sup 64}Ge. Similarly, beta-delayed protons from {sup 73}Sr at an energy of 3.75 {plus_minus} 0.04 MeV have been observed, corresponding to decay of the T = 3/2 isobaric analog state in {sup 73}Rb to the ground state of {sup 72}Kr. From the energies of these proton transitions, an improved prediction of the mass excesses of the two parent nuclei ({sup 65}Se and {sup 73}Sr) is made through the use of a Coulomb displacement formula. These predictions are {minus}33.41 {plus_minus} 0.26 and {minus}31.87 {plus_minus} 0.24 MeV for {sup 65}Se and {sup 73}Sr, respectively. Studies of low energy (down to {approximately}200 keV) beta-delayed …
Date: December 1, 1993
Creator: Batchelder, J. C.
System: The UNT Digital Library
Hydrogenation of nitriles on a well-characterized nickel surface: From surface science studies to liquid phase catalytic activity measurements (open access)

Hydrogenation of nitriles on a well-characterized nickel surface: From surface science studies to liquid phase catalytic activity measurements

Nitrile hydrogenation is the most commonly used method for preparing diverse amines. This thesis is aimed at the mechanism and factors affecting the performance of Ni-based catalysts in nitrile hydrogenations. Surface science techniques are used to study bonding of nitriles and amines to a Ni(111) surface and to identify surface intermediates. Liquid-phase hydrogenations of cyclohexene and 1-hexene on a Pt foil were carried out successfully. Finally, knowledge about the surface structure, surface chemical bond, dynamics of surface atoms (diffusion, growth), and reactivity of metal surfaces from solid-gas interface studies, is discussed.
Date: December 1, 1993
Creator: Gardin, D. E.
System: The UNT Digital Library
Infrared diode laser studies of the products from the reaction CH{sub 2}({tilde X}{sup 3}B{sub 1}) + O{sub 2} and from the near-UV photolysis of CH{sub 3}NCS (open access)

Infrared diode laser studies of the products from the reaction CH{sub 2}({tilde X}{sup 3}B{sub 1}) + O{sub 2} and from the near-UV photolysis of CH{sub 3}NCS

Absolute yields of CO, CO{sub 2}, and H{sub 2}CO formed in reaction of triplet methylene ({tilde X} {sup 3}B{sub 1} {triple_bond} CH{sub 2}) with O{sub 2} were determined using a flash kinetic spectrometer. CH{sub 2} radicals were generated by excimer laser photolysis of ketene and product formation was monitored by time-resolved infrared diode laser absorption. Reaction was carried out in a static gas cell at room temperature at 1--25 torr. Measured product yields were CO, 0.34 {plus_minus} 0.06; CO{sub 2}, 0.40 {plus_minus} 0.08 H{sub 2}CO, 0.16 {plus_minus} 0.04. Rate constants for production of CO and CO{sub 2} were equivalent to the published rate constant for removal of CH{sub 2}. Indirect evidence indicated that yield of OH is 0.30 {plus_minus} 0.05. Ultraviolet spectrum of methyl isothiocyanate (CH{sub 3}NCS {triple_bond} MITC) and quantum yield for dissociation into methyl isocyanide (CH{sub 3}NC) and atomic sulfur at 308 nm, {Phi} 0.98 {plus_minus} 0.24, were measured. MITC is widely used as a fumigant and readily enters the atmosphere during and after application. Results indicate that photodissociation by sunlight is an effective pathway for removal of MITC from atmosphere. A mechanism is proposed to account for the observed formation of methyl isocyanate (CH{sub 3}NCO) as a …
Date: December 1, 1993
Creator: Alvarez, R. A.
System: The UNT Digital Library
Magnetic flux reconstruction methods for shaped tokamaks (open access)

Magnetic flux reconstruction methods for shaped tokamaks

The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p` and FF` functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green`s function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being …
Date: December 1, 1993
Creator: Tsui, Chi-Wa
System: The UNT Digital Library
A measurement of the left-right cross section asymmetry in Z{sup 0} production with polarized e{sup +}e{sup {minus}} collisions (open access)

A measurement of the left-right cross section asymmetry in Z{sup 0} production with polarized e{sup +}e{sup {minus}} collisions

The Stanford Linear Collider at SLAC is an e{sup +}e{sup {minus}} collider running at {radical}s {approx} M{sub Z} and has provided an electron beam with longitudinal polarization at the SLC interaction point. The 1992 polarized run data were taken with the SLD detector. The author presents here the measurement of the left-right cross section asymmetry (A{sub LR}) for the 1992 run. The polarized run began in May and ended in September of 1992 at a mean center-of-mass energy of 91.56 GeV. Tower hit information of the liquid argon calorimeter and endcap warm iron calorimeter pads were used for selecting hadronic Z{sup 0} or tau pair events. The SLD detector collected about 11,000 events during this run. The magnitude of the longitudinal polarization of the electron beam was continuously measured by a polarimeter based on Compton scattering, and was monitored by a polarimeter based on Moller scattering. The luminosity-weighted average longitudinal polarization during the 1992 run was measured as 22.4 {+-} 0.6 (syst.)%. From these data, the value of A{sub LR} has been measured to be 0.102 {+-} 0.044 (stat.) {+-} 0.003 (syst.), corresponding to an effective electroweak mixing angle (sin{sup 2}{theta}{sub w}{sup eff}) of 0.2375 {+-} 0.0056 (stat.) {+-} 0.0004 …
Date: December 1, 1993
Creator: Park, H.
System: The UNT Digital Library
Micromorphology, mineralogy, and genesis of soils and fracture fills and the Pajarito Plateau, New Mexico (open access)

Micromorphology, mineralogy, and genesis of soils and fracture fills and the Pajarito Plateau, New Mexico

The town of Los Alamos, and the Los Alamos National Laboratory (LANL), are located on the Pajarito Plateau in north-central New Mexico. Environmental concerns have recently focused attention on the numerous fractures in the Bandelier Tuff, the series of volcanic rock units that make up most of the plateau. These fractures have come into question as possible conduits for transport of contaminants downward through the tuff. This, study arose out of a need to evaluate the potential for contaminant transport in the fractures. Because the fractures are typically filled, or partially filled, with soil-like material, and appear to be physically continuous with the soils on the surface of the Pajarito Plateau, it was decided to approach the question of the fractures from a soil genesis and morphology standpoint. Specifically, it was believed that soil characterization techniques, including soil micromorphological and mineralogical analyses, could provide information about the dominant processes (past and present) acting in the soils and fractures. The specific objectives of this research were to investigate: (1) the physical, mineralogical and chemical nature of fracture-filling materials in the Bandelier Tuff, as well as associated surface soils; (2) the relationships among fracture-fills, tuff bedrock, and surface soils of the Pajarito …
Date: December 1, 1993
Creator: Davenport, D. W.
System: The UNT Digital Library
Optical field ionization of atoms and ions using ultrashort laser pulses (open access)

Optical field ionization of atoms and ions using ultrashort laser pulses

This dissertation research is an investigation of the strong optical field ionization of atoms and ions by 120-fs, 614-run laser pulses and 130-fs, 800-nm laser pulses. The experiments have shown ionization that is enhanced above the predictions of sequential tunneling models for He{sup +2}, Ne{sup +2} and Ar{sup +2}. The ion yields for He{sup +l}, Ne{sup +l} and Ar{sup +l} agree well with the theoretical predictions of optical tunneling models. Investigation of the polarization dependence of the ionization indicates that the enhancements are consistent with a nonsequential ionization mechanism in which the linearly polarized field drives the electron wavefunction back toward the ion core and causes double ionization through inelastic e-2e scattering. These investigations have initiated a number of other studies by other groups and are of current scientific interest in the fields of high-irradiance laser-matter interactions and production of high-density plasmas. This work involved: (1) Understanding the characteristic nature of the ion yields produced by tunneling ionization through investigation of analytic solutions for tunneling at optical frequencies. (2) Extensive characterization of the pulses produced by 614-nm and 800-ran ultrashort pulse lasers. Absolute calibration of the irradiance scale produced shows the practicality of the inverse problem--measuring peak laser irradiance using …
Date: December 1, 1993
Creator: Fittinghoff, D. N.
System: The UNT Digital Library
The spectre of uncertainty in communicating technological risk (open access)

The spectre of uncertainty in communicating technological risk

The literature does not clearly describe the potential moral and ethical conflicts that can exist between technology sponsors and the technical communicators whose job it is to present potentially risky technology to the non-technical people most likely to be imperiled by such risk. Equally important, the literature does not address the issue of uncertainty -- not the uncertainty likely to be experienced by the community at risk, but the unreliable processes and methodologies used by technology sponsors to define, quantify, and develop strategies to mitigate technological risks. In this paper, the author goes beyond a description of risk communication, the nature of the generally predictable interaction between technology advocates and non-technically trained individuals, and current trends in the field. Although that kind of information is critical to the success of any risk communication activity, and he has included it when necessary to provide background and perspective, without knowing how and why risk assessment is done, it has limited practical applicability outside the sterile, value-free vacuum in which it is usually framed. Technical communicators, particularly those responsible for communicating potential technological risk, must also understand the social, political, economic, statistical, and ethical issues they will invariably encounter.
Date: December 1, 1993
Creator: Broesius, M. T.
System: The UNT Digital Library
Studies of interfaces and vapors with Optical Second Harmonic Generation (open access)

Studies of interfaces and vapors with Optical Second Harmonic Generation

Optical Second Harmonic Generation (SHG) has been applied to the study of soap-like molecules adsorbed to the water-air interface. By calibrating the signal from a soluble monolayer with that of an insoluble homolog, absolute measurements of the surface density could be obtained and related to the bulk concentration and surface tension. We could then demonstrate that the soluble surfactant forms a single monolayer at the interface. Furthermore, it deviates significantly from the ideal case in that its activity coefficients are far from 1, yet those coefficients remain constant over a broad range of surface pressures. We present evidence of a first-order phase transition taking place during the adsorption of this soluble monolayer. We consider the effects of the non-ideal behavior and the phase transition on the microscopic model of adsorption, and formulate an alternative to the Langmuir picture of adsorption which is just as simple, yet it can more easily allow for non-ideal behavior. The second half of this thesis considers the problem of SHG in bulk metal vapors. The symmetry of the vapor forbids SHG, yet it has been observed. We consider several models whereby the symmetry of the vapor is broken by the presence of the laser and …
Date: December 1, 1993
Creator: Mullin, C. S.
System: The UNT Digital Library
Work hardening behavior in aluminum alloy 2090 (open access)

Work hardening behavior in aluminum alloy 2090

An investigation into the work hardening behavior of an aluminum alloy 2090-T81 Al-3.05Cu-2.16Li-0.12Zr at various test temperatures, heat treatment conditions and microstructures was conducted. One microstructure consisted of unrecrystallized, highly textured grains, and the other microstructure was composed of recrystallized grains. Microstructural effects on work hardening were divided into two levels of contribution: the grain structure level, which consisted of the grain size and shape, subgrains and texture, and the microconsistent level, which included the precipitates and solutes. Two heat treatments were studied: the as-received, peak-aged condition, and the solution heat treated condition where the as-received plate was resolutionized. Observations of the deformed surface of both as-received grain structures at various prestrains indicated that there was no correlation between an increase in slip homogeneity and an increase in work hardening. The increase in out-of-plane grain rotation at lower temperatures was not primarily responsible for the increase in work hardening. In addition, the fully plastic deformation microstructure for the unrecrystallized microstructure appeared very inhomogeneous as the grains deformed in bands; there were also bands of grains that had very little to no deformation. From the work hardening plots it was found that an unrecrystallized, (110)<112> textured grain structure with a homogeneous …
Date: December 1, 1993
Creator: Tseng, C.
System: The UNT Digital Library
Fundamental studies of hydrogen interaction with supported meta and bimetallic catalysts (open access)

Fundamental studies of hydrogen interaction with supported meta and bimetallic catalysts

The thesis is divided into 3 parts: interaction of H with silica supported Ru catalysts (high pressure in situ NMR), in situ NMR study of H interaction with supported Ru-group IB bimetallic catalysts, and in-situ NMR study of H effects on silica-supported Pt, Rh and Ru catalysts.
Date: December 7, 1993
Creator: Bhatia, S.
System: The UNT Digital Library
Gas phase thermochemistry of organogermanium compounds (open access)

Gas phase thermochemistry of organogermanium compounds

A variety of silyl- and alkyl-germylene precursors have been synthesized and subsequently pyrolyzed in the gas phase. Arrhenius parameters were obtained employing a pulsed-stirred flow reactor for these unimolecular decompositions. These precursors are divided into two major categories by mechanism of germylene extrusion: {alpha}-elimination precursors and germylacetylenes. The extrusion of germylenes from germylacetylene precursors is of primary interest. A mechanism is proposed employing a germacyclopropene intermediate. Evidence supporting this mechanism is presented. In the process of exploring germylacetylenes as germylene precursors, an apparent dyatropic rearrangement between germanium and silicon was observed. This rearrangement was subsequently explored.
Date: December 7, 1993
Creator: Engel, J. P.
System: The UNT Digital Library
Terfenol: A study of the phase equilibrium diagram and the solidification process (open access)

Terfenol: A study of the phase equilibrium diagram and the solidification process

Terfenol is a rare earth-iron alloy that was first developed at the Naval Ordinance Laboratory because of its rare magnetostrictive properties. Terfenol is composed of terbium and dysprosium combined with iron in a composition Tb{sub x}Dy{sub 1{minus}x}Fe{sub 2}, where x{approximately}0.3. The objective of this work was to determine the growth characteristics of Terfenol and its dependence on solidification rate, temperature gradient, and stoichiometry. Specific goals of this work were to verify the phase equilibria that is currently accepted for the systems DyFe{sub 2} and TbFe{sub 2}, and establish the phase equilibria near the composition Tb{sub 0.3}Dy{sub 0.7}Fe{sub 2}; establish that Terfenol grows directly from the liquid and that the reaction is occurring under metastable conditions; evaluate whether or not Terfenol can be grown under plane front conditions with a new radiofrequency float zone apparatus, and; determine whether or not <111> seeded crystals can be grown and <111> single crystals produced by elimination of dendrites employing growth methods capable of achieving high gradient/solidification rate ratios.
Date: December 7, 1993
Creator: Anderson, M.
System: The UNT Digital Library
Topics in electroweak baryogenesis: The sphaleron and t-violation (open access)

Topics in electroweak baryogenesis: The sphaleron and t-violation

Assuming that beyond the standard model physics can be parametrized in terms of high dimensional operators, we examine their effects on the energy of the sphaleron and the classical solution of the gauge and Higgs fields. In the absence of fermions, all of the six dimension 6 operators which are SU(2) symmetric have a small effect when calculated perturbatively. However, calculated non-perturbatively, one of the operators alters the boundary conditions of the equations of motion of the Higgs and gauge fields involved, and another operator gives rise to an abrupt change in the sphaleron energy at a small but definite Higgs quartic coupling. The magnitude of the T-violating muon polarization induced by electromagnetic final state interaction in the radiative Kaon decay K{sup +} {yields} {mu}{sup +}{nu}{mu}{gamma} is order of 10{sup {minus}3}.
Date: December 7, 1993
Creator: SeungKoog, L.
System: The UNT Digital Library
Characterization of Zns-GaP Naon-composites (open access)

Characterization of Zns-GaP Naon-composites

It proved possible to produce consistent, high-quality nanocrystalline ZnS powders with grain sizes as small as 8 nm. These powders are nano-porous and are readily impregnated with GaP precursor, although inconsistently. Both crystal structure and small grain size of the ZnS can be maintained through the use of GaP. Heat treatment of the impregnated powders results in a ZnS-GaP composite structure where the grain sizes of the phases are on the order of 10--20 nm. Conventional powder processing should be able to produce optically dense ceramic compacts with improved mechanical properties and suitable IR transmission.
Date: December 9, 1993
Creator: Todd, V.
System: The UNT Digital Library
Investigation of the phase equilibria and phase transformations associated with the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} superconductor (open access)

Investigation of the phase equilibria and phase transformations associated with the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} superconductor

The solid solution region and reaction kinetics of the Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (2212) superconductor were examined as a function of temperature and oxygen partial pressure. Crystallization studies from the glassy and molten states were undertaken to determine the phase transformation and kinetics associated with the formation of 2212 and other competing phases. Crystallization of nominal 2212 glasses was found to proceed in two steps with the formation of Bi{sub 2}Sr{sub 2{minus}x}Ca{sub x}CuO{sub y} (2201) and Cu{sub 2}O followed by Bi{sub 2}Sr{sub 3{minus}x}Ca{sub x}O{sub y}, CaO, and SrO. The 2212 phase converts from the 2201 phase with increasing temperatures. However, its formation below 800 C was kinetically limited. At 800 C and above, a nearly full conversion to the 2212 phase was achieved after only one minute although considerably longer anneal times were necessary for the system to reach equilibrium. In low oxygen partial pressures, the solidus is reduced to approximately 750 C. Solidification studies revealed an eutectic structure separating the incongruently melting 2212/2201 phases at high oxygen partial pressures from the congruently melting Bi{sub 2}Sr{sub 3{minus}x}Ca{sub x}O{sub y} (23x) and Bi{sub 2}Sr{sub 2{minus}x}Ca{sub x}O{sub y} (22x) phases present at low oxygen partial pressures. During solidification in various oxygen …
Date: December 9, 1993
Creator: Holesinger, T.
System: The UNT Digital Library
Plasma enhanced chemical vapor deposition of ZrO{sub 2} thin films (open access)

Plasma enhanced chemical vapor deposition of ZrO{sub 2} thin films

Amorphous ZrO{sub 2} thin films were deposited in an inductively coupled PECVD system using a Zr {beta}-diketonate, Zr(C{sub 11}H{sub 19}O{sub 2}){sub 4}, as the precursor. The deposits were air annealed at 900C for 5 min to get pure, single phase, oriented, polycrystalline {alpha}-ZrO{sub 2}. Feasibility of using 2 different types of reactors was investigated. The inductively heated horizontal reactor depositions at 600C had a lower deposition rate and the films were non-uniform in thickness with a columnar structure. The resistively heated vertical reactor depositions at 350C had a higher deposition rate and the films were more uniform in thickness with a fine grained microstructure. The statistical design was demonstrated as an effective technique to analyze the effect of process conditions on the rate of deposition and relative (h00) orientation. The factorial design was used to quantify the two responses in terms of the process variables and their mutual interactions. The statistical design for rate of deposition was found to correlate with the trends observed in classical design.
Date: December 9, 1993
Creator: Saravanan, Kolandaivelu
System: The UNT Digital Library
Quantum groups, non-commutative differential geometry and applications (open access)

Quantum groups, non-commutative differential geometry and applications

The topic of this thesis is the development of a versatile and geometrically motivated differential calculus on non-commutative or quantum spaces, providing powerful but easy-to-use mathematical tools for applications in physics and related sciences. A generalization of unitary time evolution is proposed and studied for a simple 2-level system, leading to non-conservation of microscopic entropy, a phenomenon new to quantum mechanics. A Cartan calculus that combines functions, forms, Lie derivatives and inner derivations along general vector fields into one big algebra is constructed for quantum groups and then extended to quantum planes. The construction of a tangent bundle on a quantum group manifold and an BRST type approach to quantum group gauge theory are given as further examples of applications. The material is organized in two parts: Part I studies vector fields on quantum groups, emphasizing Hopf algebraic structures, but also introducing a ``quantum geometric`` construction. Using a generalized semi-direct product construction we combine the dual Hopf algebras A of functions and U of left-invariant vector fields into one fully bicovariant algebra of differential operators. The pure braid group is introduced as the commutant of {Delta}(U). It provides invariant maps A {yields} U and thereby bicovariant vector fields, casimirs and …
Date: December 9, 1993
Creator: Schupp, P.
System: The UNT Digital Library
Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys (open access)

Compressive strength, plastic flow properties, and surface frictional effects of 1100, 3003 and 6061 aluminum alloys

The purpose of this study is to find aluminum alloys that are effective for use as wire vacuum seals in the 800MeV particle accelerator located at the Louis Anderson Meson Physics Facility (LAMPF) in Los Alamos, NM. Three alloys, Al 1100, Al 3003, and Al 6061, are investigated under uniaxial compression to determine stresses for a given height reduction from 0 to 70 percent, and to find plastic flow and surface interaction effects. Right-circular cylindrical specimens are compressed on-end (cylindrically) and radially (for modeling as compressed wire). Aluminum 1100 and 3003 alloys are compared for length to diameter ratios of 1 and 2 for both compression types, and are then compared to results of radial compression of annealed small diameter Al 1100 wire currently used at LAMPE. The specimens are also compressed between three different platen surfaces, polished steel, etched steel, and aluminum 6061-T6, to determine effects of friction. The Al 3003 alloy exhibits 20 to 25% lower stresses at all height reductions than Al 1100 for both cylindrical and radial compression.
Date: December 31, 1993
Creator: Pinkerton, G.W.
System: The UNT Digital Library