Advanced secondary recovery demonstration for the Sooner Unit (open access)

Advanced secondary recovery demonstration for the Sooner Unit

The objectives of the project are to demonstrate the effectiveness of geologically targeted infill drilling and improved reservoir management to obtain maximum oil recovery from the Sooner Unit field using water injection and gas recycling as secondary methods. The first phase of the project involves an integrated multi-discipline approach to identify optimum well sites and development of a reservoir operations plan. The second phase will involve drilling of up to three geologically targeted infill wells and establishing production/injection schedules. Reservoir simulation, transient well tests and careful production monitoring will be used to evaluate the results. The third phase will involve technology transfer through a series of technical papers and presentations of a short course. Emphasis will be on the economics of the project and the implemented technologies. Summary of technical progress is presented for: Well drilling and completion; seismic data acquisition; and geologic and engineering interpretation.
Date: February 24, 1993
Creator: Sippel, M.; Junkin, J.; Pritchett, R. & Hardage, B.
Object Type: Report
System: The UNT Digital Library
Advanced secondary recovery demonstration for the Sooner Unit. [Quarterly] report, October 1992--January 1993 (open access)

Advanced secondary recovery demonstration for the Sooner Unit. [Quarterly] report, October 1992--January 1993

The objectives of the project are to demonstrate the effectiveness of geologically targeted infill drilling and improved reservoir management to obtain maximum oil recovery from the Sooner Unit field using water injection and gas recycling as secondary methods. The first phase of the project involves an integrated multi-discipline approach to identify optimum well sites and development of a reservoir operations plan. The second phase will involve drilling of up to three geologically targeted infill wells and establishing production/injection schedules. Reservoir simulation, transient well tests and careful production monitoring will be used to evaluate the results. The third phase will involve technology transfer through a series of technical papers and presentations of a short course. Emphasis will be on the economics of the project and the implemented technologies. Summary of technical progress is presented for: Well drilling and completion; seismic data acquisition; and geologic and engineering interpretation.
Date: February 24, 1993
Creator: Sippel, M.; Junkin, J.; Pritchett, R. & Hardage, B.
Object Type: Report
System: The UNT Digital Library
Development of the prototype Munitions Case Moisture Meter, Model ORNL-1 (open access)

Development of the prototype Munitions Case Moisture Meter, Model ORNL-1

There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental …
Date: February 24, 1993
Creator: Agouridis, D. C.; Gayle, T. M. & Griest, W. H.
Object Type: Report
System: The UNT Digital Library
Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report (open access)

Development of the prototype Munitions Case Moisture Meter, Model ORNL-1. Final report

There is a great need for a rapid and simple means of determining the moisture content in combustible cartridge case (ccc) munitions. Previous studies have demonstrated that accumulation of moisture in ccc rounds, such as the M829, leads to softening of the case wall and weakening of the adhesive joint. Moisture in the ccc can lead to incomplete combustion of the case upon firing the round. Currently, there are no facile methods for measuring the moisture content. A prototype portable meter for non-destructive and rapid estimation of moisture in ccc has been developed. The Munitions Case Moisture Meter Model ORNL-1 demonstrates the feasibility of developing an instrument based on the moisture dependence of dielectric properties, to measure moisture in ccc munitions in storage and in the field. These instruments are simple, inexpensive, lightweight, portable, low-power battery operated, and intrinsically safe. They provide nondestructive, noninvasive, and rapid measurements. Calibration data for the prototype are not available at this time. Therefore, calibration of the meter and the development of a scale reading directly moisture content in munitions rounds could not be completed. These data will be supplied by the US Army from its tests of the meter with actual munitions. However, experimental …
Date: February 24, 1993
Creator: Agouridis, D. C.; Gayle, T. M. & Griest, W. H.
Object Type: Report
System: The UNT Digital Library
Radio galaxies and their environment (open access)

Radio galaxies and their environment

The relationships between radio galaxies and their environment are varied, complex, and evolve with cosmic epoch. Basic questions are what role the environment plays in triggering and fuelling (radio) galaxy activity what the effects of this activity are on its environment, and how radio galaxies and environment evolve. Clearly, this could be the topic of a workshop all in itself and the scope of this review will necessarily be limited. A review of the connections between environment and galaxy activity in general has been given by Heckman. First, I will briefly summarize the relationships between parent galaxy and cluster environments, and radio galaxies. A more detailed discussion of various aspects of this will be given elsewhere by F. Owen, J.0. Burns and R. Perley. I will then discuss the current status of investigations of extended emission-line regions in radio galaxies, again referring elsewhere in this volume for more detailed discussions of some particular aspects (kinematics and ionization mechanisms by K. Meisenheimer; polarization and spectral index lobe asymmetries by G. Pooley). I will conclude with a brief discussion of the current status of observations of high redshift radio galaxies.
Date: February 24, 1993
Creator: van Breugel, W.
Object Type: Article
System: The UNT Digital Library