Diffusion of trichloroethylene through the threaded joints of PVC (polyvinylchloride) pipe (open access)

Diffusion of trichloroethylene through the threaded joints of PVC (polyvinylchloride) pipe

The data engineers and scientists use to determine if the groundwater supply is contaminated are derived from analysis of samples taken largely from monitoring wells. For these data to be reliable several factors must be considered. One factor is the integrity of the monitoring well. In this project, emphasis has been placed on the potential impact on water quality caused by diffusion across the threaded joints of PVC pipe. In this study, the diffusion of trichloroethylene across several common types of threaded joints (i.e., square flush, modified ACME, modified ACME stub, and ACME) has been measured. Samples were obtained from the water inside the pipe sections and analyzed for trichloroethylene by gas chromatography. Breakthrough occurs within days of the samples being placed in the baths. The softened PVC joints of the pipes in the pure trichloroethylene split before the first sample interval of 1.5 weeks. The data show great variability in casting joints from the same manufacturer, and indicate a need for increased precision in the manufacturing of the PVC pipe joints. A one-dimensional diffusion model is used to determine an equivalent gap size through which the diffusion occurs. Flow rates through the threaded joints are calculated by using the …
Date: December 1, 1990
Creator: Jerome, Karen M.
System: The UNT Digital Library
Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina (open access)

Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26{degree}C and downshifted 30-26-30{degree}C) and females (constant 30{degree}C and upshifted 26-30-26{degree}C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26{degree}C group and 93% males from the downshifted group. 100% females resulted from both the constant 30{degree}C group and the upshifted group. Turtles hatching from eggs incubated constantly at 26{degree}C were significantly larger than hatchlings from eggs incubated at a constant 30{degree}C or downshifted. Hatchlings were raised in individual aquaria at 25{degree}C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30{degree}C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of …
Date: December 1, 1990
Creator: Ryan, K. M.
System: The UNT Digital Library
A Fully Coupled Monte Carlo/Discrete Ordinates Solution to the Neutron Transport Equation. Final Report (open access)

A Fully Coupled Monte Carlo/Discrete Ordinates Solution to the Neutron Transport Equation. Final Report

The neutron transport equation is solved by a hybrid method that iteratively couples regions where deterministic (S{sub N}) and stochastic (Monte Carlo) methods are applied. Unlike previous hybrid methods, the Monte Carlo and S{sub N} regions are fully coupled in the sense that no assumption is made about geometrical separation or decoupling. The hybrid method provides a new means of solving problems involving both optically thick and optically thin regions that neither Monte Carlo nor S{sub N} is well suited for by themselves. The fully coupled Monte Carlo/S{sub N} technique consists of defining spatial and/or energy regions of a problem in which either a Monte Carlo calculation or an S{sub N} calculation is to be performed. The Monte Carlo region may comprise the entire spatial region for selected energy groups, or may consist of a rectangular area that is either completely or partially embedded in an arbitrary S{sub N} region. The Monte Carlo and S{sub N} regions are then connected through the common angular boundary fluxes, which are determined iteratively using the response matrix technique, and volumetric sources. The hybrid method has been implemented in the S{sub N} code TWODANT by adding special-purpose Monte Carlo subroutines to calculate the response …
Date: December 31, 1990
Creator: Filippone, W. L. & Baker, R. S.
System: The UNT Digital Library
Transverse liquid fuel jet breakup, burning, and ignition (open access)

Transverse liquid fuel jet breakup, burning, and ignition

An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.
Date: December 31, 1990
Creator: Li, H.
System: The UNT Digital Library
Quantum Monte Carlo methods and lithium cluster properties (open access)

Quantum Monte Carlo methods and lithium cluster properties

Properties of small lithium clusters with sizes ranging from n = 1 to 5 atoms were investigated using quantum Monte Carlo (QMC) methods. Cluster geometries were found from complete active space self consistent field (CASSCF) calculations. A detailed development of the QMC method leading to the variational QMC (V-QMC) and diffusion QMC (D-QMC) methods is shown. The many-body aspect of electron correlation is introduced into the QMC importance sampling electron-electron correlation functions by using density dependent parameters, and are shown to increase the amount of correlation energy obtained in V-QMC calculations. A detailed analysis of D-QMC time-step bias is made and is found to be at least linear with respect to the time-step. The D-QMC calculations determined the lithium cluster ionization potentials to be 0.1982(14) [0.1981], 0.1895(9) [0.1874(4)], 0.1530(34) [0.1599(73)], 0.1664(37) [0.1724(110)], 0.1613(43) [0.1675(110)] Hartrees for lithium clusters n = 1 through 5, respectively; in good agreement with experimental results shown in the brackets. Also, the binding energies per atom was computed to be 0.0177(8) [0.0203(12)], 0.0188(10) [0.0220(21)], 0.0247(8) [0.0310(12)], 0.0253(8) [0.0351(8)] Hartrees for lithium clusters n = 2 through 5, respectively. The lithium cluster one-electron density is shown to have charge concentrations corresponding to nonnuclear attractors. The overall shape …
Date: December 1, 1990
Creator: Owen, R. K.
System: The UNT Digital Library