STUDIES OF THE SPONTANEOUS COMBUSTION OF LOW RANK COALS AND LIGNITES (open access)

STUDIES OF THE SPONTANEOUS COMBUSTION OF LOW RANK COALS AND LIGNITES

Spontaneous combustion has always been a problem in coal utilization especially in the storage and transportation of coal. In the United States, approximately 11% of underground coal mine fires are attributed to spontaneous coal combustion. The incidence of such fires is expected to increase with increased consumption of lower rank coals. The cause is usually suspected to be the reabsorption of moisture and oxidation. To understand the mechanisms of spontaneous combustion this study was conducted to (1) define the initial and final products during the low temperature (10 to 60 C) oxidation of coal at different partial pressures of O{sub 2}, (2) determine the rate of oxidation, and (3) measure the reaction enthalpy. The reaction rate (R) and propensity towards spontaneous combustion were evaluated in terms of the initial rate method for the mass gained due to adsorbed O{sub 2}. Equipment that was used consisted of a FT-IR (Fourier Transform-Infrared Spectrometer, Perkin Elmer), an accelerated surface area porosimeter (ASAP, Micromeritics model 2010), thermogravimetric analyzer (TGA, Cahn Microbalance TG 121) and a differential scanning calorimeter (DSC, Q1000, thermal analysis instruments). Their combination yielded data that established a relation between adsorption of oxygen and reaction enthalpy. The head space/ gas chromatograph/ mass …
Date: July 26, 2005
Creator: Okoh, Joseph M. & Dodoo, Joseph N.D.
Object Type: Report
System: The UNT Digital Library
Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System (open access)

Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System

This report describes complete results of the project entitled ''Enhanced Recovery Utilizing Variable Frequency Drives and a Distributed Power System''. This demonstration project was initiated in July 2003 and completed in March 2005. The objective of the project was to develop an integrated power production/variable frequency drive system that could easily be deployed in the oil field that would increase production and decrease operating costs. This report describes all the activities occurred and documents results of the demonstration.
Date: July 26, 2005
Creator: Peden, Randy & Shah, Sanjiv
Object Type: Report
System: The UNT Digital Library
Biotic Processes Regulating the Carbon Balance of Desert Ecosystems (open access)

Biotic Processes Regulating the Carbon Balance of Desert Ecosystems

This project provided the funding to operate and maintain the Nevada Desert FACE Facility. This support funds the CO{sub 2}, system repairs and maintenance, basic physical and biological site information, and personnel that are essential for the experiment to continue. They have continued to assess the effects of elevated CO{sub 2} on three key processes: (1) leaf- to plant-level responses of desert vegetation to elevated atmospheric CO{sub 2}; (2) ecosystem-level responses; and (3) integration of plant and ecosystem processes to understand carbon balance of deserts. The focus is the seminal interactions among atmospheric CO{sub 2}, water, and nitrogen that drive desert responses to elevated CO{sub 2} and explicitly address processes that occur across scales (biological, spatial, and temporal).
Date: July 26, 2005
Creator: Nowak, R. S.; Arnone, J.; Fenstermaker, L. & Smith, and S. D.
Object Type: Report
System: The UNT Digital Library
Bitmap Indices for Fast End-User Physics Analysis in ROOT (open access)

Bitmap Indices for Fast End-User Physics Analysis in ROOT

Most physics analysis jobs involve multiple selection steps on the input data. These selection steps are called ''cuts'' or ''queries''. A common strategy to implement these queries is to read all input data from files and then process the queries in memory. In many applications the number of variables used to define these queries is a relative small portion of the overall data set therefore reading all variables into memory takes unnecessarily long time. In this paper we describe an integration effort that can significantly reduce this unnecessary reading by using an efficient compressed bitmap index technology. The primary advantage of this index is that it can process arbitrary combinations of queries very efficiently, while most other indexing technologies suffer from the ''curse of dimensionality'' as the number of queries increases. By integrating this index technology with the ROOT analysis framework, the end-users can benefit from the added efficiency without having to modify their analysis programs. Our performance results show that for multi-dimensional queries, bitmap indices outperform the traditional analysis method up to a factor of 10.
Date: July 26, 2005
Creator: Stockinger, Kurt; Wu, Kesheng; Brun, Rene & Canal, Philippe
Object Type: Article
System: The UNT Digital Library
Cherenkov Radiation from Jets in Heavy-ion Collisions (open access)

Cherenkov Radiation from Jets in Heavy-ion Collisions

The possibility of Cherenkov-like gluon bremsstrahlung in dense matter is studied. We point out that the occurrence of Cherenkov radiation in dense matter is sensitive to the presence of partonic bound states. This is illustrated by a calculation of the dispersion relation of a massless particle in a simple model in which it couples to two different massive resonance states. We further argue that detailed spectroscopy of jet correlations can directly probe the index of refraction of this matter, which in turn will provide information about the mass scale of these partonic bound states.
Date: July 26, 2005
Creator: Koch, Volker; Majumder, Abhijit & Wang, Xin-Nian
Object Type: Article
System: The UNT Digital Library
Modified Fragmentation Function from Quark Recombination (open access)

Modified Fragmentation Function from Quark Recombination

Within the framework of the constituent quark model, it isshown that the single hadron fragmentation function of a parton can beexpressed as a convolution of shower diquark or triquark distributionfunction and quark recombination probability, if the interference betweenamplitudes of quark recombination with different momenta is neglected.Therecombination probability is determined by the hadron's wavefunction inthe constituent quark model. The shower diquark or triquark distributionfunctions of a fragmenting jet are defined in terms of overlappingmatrices of constituent quarks and parton field operators. They aresimilar in form to dihadron or trihadron fragmentation functions in termsof parton operator and hadron states. Extending the formalism to thefield theory at finite temperature, we automatically derive contributionsto the effective single hadron fragmentation function from therecombination of shower and thermal constituent quarks. Suchcontributions involve single or diquark distribution functions which inturn can be related to diquark or triquark distribution functions via sumrules. We also derive QCD evolution equations for quark distributionfunctions that in turn determine the evolution of the effective jetfragmentation functions in a thermal medium.
Date: July 26, 2005
Creator: Majumder, A.; Wang, Enke & Wang, Xin-Nian
Object Type: Article
System: The UNT Digital Library
The Implementation of the Finite-Volume Dynamical Core in the Community Atmosphere Model (open access)

The Implementation of the Finite-Volume Dynamical Core in the Community Atmosphere Model

A distributed memory message-passing parallel implementation of a finite-volume discretization of the primitive equations in the Community Atmosphere Model 3.0 is presented. These three-dimensional equations can be decoupled into a set of two-dimensional equations by the introduction of a floating vertical coordinate, resulting in considerable potential parallelism. Subsequent analysis of the data dependencies --in particular those arising from the polar singularity of the latitude-longitude coordinate system--suggests that two separate domain decompositions should be employed, each tailored for a different part of the model. The implementation requires that data be periodically redistributed between these two decompositions. Furthermore, data from nearest neighbors are kept in halo regions, which are updated between iterations. These data movements are optimized through one-sided communication primitives and multithreading. The resulting algorithm is shown to scale to very large machine configurations, even for relatively coarse resolutions.
Date: July 26, 2005
Creator: Sawyer, W. B. & Mirin, A. A.
Object Type: Article
System: The UNT Digital Library
LPM Interference and Cherenkov-like Gluon Bremsstrahlung in DenseMatter (open access)

LPM Interference and Cherenkov-like Gluon Bremsstrahlung in DenseMatter

Gluon bremsstrahlung induced by multiple parton scattering in a finite dense medium has a unique angular distribution with respect to the initial parton direction. A dead-cone structure with an opening angle; theta2{sub 0}; approx 2(1-z)/(zLE) for gluons with fractional energy z arises from the Landau-Pomeran chuck-Migdal (LPM) interference. In a medium where the gluon's dielectric constant is; epsilon>1, the LPM interference pattern is shown to become Cherenkov-like with an increased opening angle determined by the dielectric constant$/cos2/theta{sub c}=z+(1-z)//epsilon$. For a large dielectric constant/epsilon; gg 1+2/z2LE, the corresponding total radiative parton energy loss is about twice that from normal gluon bremsstrahlung. Implications of this Cherenkov-like gluon bremsstrahlung to the jet correlation pattern in high-energy heavy-ion collisions is discussed.
Date: July 26, 2005
Creator: Majumder, Abhijit & Wang, Xin-Nian
Object Type: Article
System: The UNT Digital Library
Radioactivity of Potassium Solutions: A Comparison of Calculated Activity to Measured Activity from Gross Beta Counting and Gamma Spectroscopy (open access)

Radioactivity of Potassium Solutions: A Comparison of Calculated Activity to Measured Activity from Gross Beta Counting and Gamma Spectroscopy

In order to determine if the measured beta activity for a solution containing potassium was exactly as predicted, particularly since the CES gas counter is not calibrated specifically with K-40, an experiment was conducted to compare measured activities from two radioanalytical methods (gamma spectroscopy and gas proportional counting) to calculated activities across a range of potassium concentrations. Potassium, being ubiquitous and naturally radioactive, is a well-known and common interference in gross beta counting methods. By measuring the observed beta activity due to K-40 in potassium-containing solutions across a wide range of concentrations, it was found that the observed beta activity agrees well with the beta activity calculated from the potassium concentration measured by standard inorganic analytical techniques, such as ICP-OES, and that using the measured potassium concentration to calculate the expected beta activity, and comparing this to the observed beta activity to determine if potassium can account for all the observed activity in a sample, is a valid technique. It was also observed that gamma spectroscopy is not an effective means of measuring K-40 activity below approximately 700 pCi/L, which corresponds to a solution with approximately 833 mg/L total potassium. Gas proportional counting for gross beta activity has a much …
Date: July 26, 2005
Creator: Gaylord, R. F.
Object Type: Report
System: The UNT Digital Library
Recent Advances in Modeling Hugoniots with Cheetah (open access)

Recent Advances in Modeling Hugoniots with Cheetah

We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
Date: July 26, 2005
Creator: Glaesemann, K R & Fried, L E
Object Type: Article
System: The UNT Digital Library
Improvement of electron beam quality in optical injection schemesusing negative plasma density gradients (open access)

Improvement of electron beam quality in optical injection schemesusing negative plasma density gradients

Enhanced electron trapping using plasma density down ramps as a method for improving the performance of laser injection schemes is proposed and analyzed. A decrease in density implies an increase in plasma wavelength, which can shift a relativistic electron from the defocusing to the focusing region of the accelerating wakefield, and a decrease in wake phase velocity, which lowers the trapping threshold. The specific method of two-pulse colliding pulse injector was examined using a three-dimensional test particle tracking code. A density down-ramp with a change of density on the order of tens of percent over distances greater than the plasma wavelength led to an enhancement of charge by two orders in magnitude or more, up to the limits imposed by beam loading. The accelerated bunches are ultrashort (fraction of the plasma wavelength, e.g., {approx}5 fs), high charge (>20 pC at modest injection laser intensity 10{sup 17} W/cm{sup 2}), with a relative energy spread of a few percent at a mean energy of {approx}25 MeV, and a normalized root-mean square emittance on the order 0.5 mm mrad.
Date: July 26, 2005
Creator: Fubiani, G.; Esarey, E.; Schroeder, C. B. & Leemans, W. P.
Object Type: Article
System: The UNT Digital Library
Optimized Materials From First Principles Simulations: Are We There Yet? (open access)

Optimized Materials From First Principles Simulations: Are We There Yet?

In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensed phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.
Date: July 26, 2005
Creator: Galli, G. & Gygi, F.
Object Type: Article
System: The UNT Digital Library
Hough Transform Based Corner Detection for Laser Beam Positioning (open access)

Hough Transform Based Corner Detection for Laser Beam Positioning

In laser beam alignment in addition to detecting position, one must also determine the rotation of the beam. This is essential when a commissioning new laser beam for National Ignition Facility located at the Lawrence Livermore National Laboratory. When the beam is square, the positions of the corners with respect to one another provides an estimate of the rotation of the beam. This work demonstrates corner detection in the presence or absence of a second order non-uniform illumination caused by a spatial mask. The Hough transform coupled with illumination dependent pre-processing is used to determine the corner points. We show examples from simulated and real NIF images.
Date: July 26, 2005
Creator: Awwal, A. S.
Object Type: Article
System: The UNT Digital Library
Final Report on California Regional Wind Energy Forecasting Project:Application of NARAC Wind Prediction System (open access)

Final Report on California Regional Wind Energy Forecasting Project:Application of NARAC Wind Prediction System

Wind power is the fastest growing renewable energy technology and electric power source (AWEA, 2004a). This renewable energy has demonstrated its readiness to become a more significant contributor to the electricity supply in the western U.S. and help ease the power shortage (AWEA, 2000). The practical exercise of this alternative energy supply also showed its function in stabilizing electricity prices and reducing the emissions of pollution and greenhouse gases from other natural gas-fired power plants. According to the U.S. Department of Energy (DOE), the world's winds could theoretically supply the equivalent of 5800 quadrillion BTUs of energy each year, which is 15 times current world energy demand (AWEA, 2004b). Archer and Jacobson (2005) also reported an estimation of the global wind energy potential with the magnitude near half of DOE's quote. Wind energy has been widely used in Europe; it currently supplies 20% and 6% of Denmark's and Germany's electric power, respectively, while less than 1% of U.S. electricity is generated from wind (AWEA, 2004a). The production of wind energy in California ({approx}1.2% of total power) is slightly higher than the national average (CEC & EPRI, 2003). With the recently enacted Renewable Portfolio Standards calling for 20% of renewables in …
Date: July 26, 2005
Creator: Chin, H S
Object Type: Report
System: The UNT Digital Library
A Constrained Optimization Algorithm for Total Energy Minimizationin Electronic Structure Calculation (open access)

A Constrained Optimization Algorithm for Total Energy Minimizationin Electronic Structure Calculation

A new direct constrained optimization algorithm forminimizing the Kohn-Sham (KS) total energy functional is presented inthis paper. The key ingredients of this algorithm involve projecting thetotal energy functional into a sequences of subspaces of small dimensionsand seeking the minimizer of total energy functional within eachsubspace. The minimizer of a subspace energy functional not only providesa search direction along which the KS total energy functional decreasesbut also gives an optimal "step-length" to move along this searchdirection. A numerical example is provided to demonstrate that this newdirect constrained optimization algorithm can be more efficient than theself-consistent field (SCF) iteration.
Date: July 26, 2005
Creator: Yang, Chao; Meza, Juan C. & Wang, Lin-Wang
Object Type: Article
System: The UNT Digital Library
Melting of Xenon to 80 GPa, p-d hybridization, and an ISRO liquid (open access)

Melting of Xenon to 80 GPa, p-d hybridization, and an ISRO liquid

Measurements made in a laser heated diamond-anvil cell are reported that extend the melting curve of Xe to 80 GPa and 3350 K. The steep lowering of the melting slope (dT/dP) that occurs near 17 GPa and 2750 K results from the hybridization of the p-like valence and d-like conduction states with the formation of clusters in the liquid having Icosahedral Short-Range Order (ISRO).
Date: July 26, 2005
Creator: Ross, M; Boehler, R & Soderlind, P
Object Type: Article
System: The UNT Digital Library
Cylinder Lens Alignment in the LTP (open access)

Cylinder Lens Alignment in the LTP

The Long Trace Profiler (LTP), is well-suited for the measurement of the axial figure of cylindrical mirrors that usually have a long radius of curvature in the axial direction but have a short radius of curvature in the sagittal direction. The sagittal curvature causes the probe beam to diverge in the transverse direction without coming to a focus on the detector, resulting in a very weak signal. It is useful to place a cylinder lens into the optical system above the mirror under test to refocus the sagittal divergence and increase the signal level. A positive cylinder lens can be placed at two positions above the surface: the Cat's Eye reflection position and the Wavefront-Matching position. The Cat's Eye position, is very tolerant to mirror misalignment, which is not good if absolute axial radius of curvature is to be measured. Lateral positioning and rotational misalignments of lens and the mirror combine to produce unusual profile results. This paper looks at various alignment issues with measurements and by raytrace simulations to determine the best strategy to minimize radius of curvature errors in the measurement of cylindrical aspheres.
Date: July 26, 2005
Creator: Takacs, P. Z.
Object Type: Article
System: The UNT Digital Library