Activated transport in AMTEC electrodes (open access)

Activated transport in AMTEC electrodes

Transport of alkali metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant, reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. Little can be learned about the detailed mass transport process from the ac impedance or current voltage curves of an electrode at one set of operating parameters, because the transport process includes a number of important physical parameters that are not all uniquely determined by one experiment. The temperature dependence of diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and …
Date: July 1, 1992
Creator: Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O`Connor, D. & Kikkert, S.
Object Type: Article
System: The UNT Digital Library
Direct Conversion Technology (open access)

Direct Conversion Technology

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)
Date: July 1, 1992
Creator: Back, L.H.; Fabris, G. & Ryan, M.A.
Object Type: Report
System: The UNT Digital Library
Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992 (open access)

Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)
Date: July 1, 1992
Creator: Back, L. H.; Fabris, G. & Ryan, M. A.
Object Type: Report
System: The UNT Digital Library
Four absolute cavity radiometer (pyrheliometer) intercomparisons at New River, Arizona: radiometer standards (open access)

Four absolute cavity radiometer (pyrheliometer) intercomparisons at New River, Arizona: radiometer standards

Four detailed intercomparisons were made for a number of models of cavity-type self-calibrating radiometers (pyrheliometers). Each intercomparison consisted of simultaneous readings of pyrheliometers at 30-second intervals in runs of 10 minutes, with at least 15 runs per intercomparison. Twenty-seven instruments were in at least one intercomparison, and five were in all four. Summarized results and all raw data are provided from the intercomparisons.
Date: July 1, 1981
Creator: Estey, R.S. & Seaman, C.H.
Object Type: Report
System: The UNT Digital Library
Nuclear electric propulsion for future NASA space science missions (open access)

Nuclear electric propulsion for future NASA space science missions

This study has been made to assess the needs, potential benefits and the applicability of early (circa year 2000) Nuclear Electric Propulsion (NEP) technology in conducting NASA science missions. The study goals are: to obtain the performance characteristics of near term NEP technologies; to measure the performance potential of NEP for important OSSA missions; to compare NEP performance with that of conventional chemical propulsion; to identify key NEP system requirements; to clarify and depict the degree of importance NEP might have in advancing NASA space science goals; and to disseminate the results in a format useful to both NEP users and technology developers. This is a mission performance study and precludes investigations of multitudes of new mission operation and systems design issues attendant in a NEP flight.
Date: July 20, 1993
Creator: Yen, Chen-wan L.
Object Type: Report
System: The UNT Digital Library
Reversible thermodynamic cycle for AMTEC power conversion (open access)

Reversible thermodynamic cycle for AMTEC power conversion

The thermodynamic cycle appropriate to an AMTEC (alkali metal thermal-to-electric converter) cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6% of Carnot efficiency for heat input and rejection temperatures (900--1300 K and 400--800 K, respectively) typical of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature. 10 refs.
Date: July 1, 1992
Creator: Vining, C. B.; Williams, R. M.; Underwood, M. L.; Ryan, M. A. & Suitor, J. W.
Object Type: Article
System: The UNT Digital Library
Surfactant studies for bench-scale operation. Fourth quarterly technical progress report, April 1, 1993--June 30, 1993 (open access)

Surfactant studies for bench-scale operation. Fourth quarterly technical progress report, April 1, 1993--June 30, 1993

A phase 2 study has been initiated to investigate surfactant- assisted coal liquefaction, with the objective of quantifying the enhancement in liquid yields and product quality. This report covers the fourth quarter of work. The major accomplishments were (1) Completion of coal liquefaction autoclave reactor runs and related analysis with Illinois {number_sign}6 coal with time as a variable at 375{degree}C, and pressures of 1800 psig; (2) an investigation into the mechanism of the effect that the lignosulfonate surfactant has in enhancing liquefaction yields; and (3) completion of a bench-scale test with the surfactant in the continuous flow Catalytic Two Stage Liquefaction Process (CTSL) reactor at HRI.
Date: July 23, 1993
Creator: Hickey, G. S. & Sharma, P. K.
Object Type: Report
System: The UNT Digital Library
Thermoelectric material development. Quarterly technical progress report, January 1, 1995--March 31, 1995 (open access)

Thermoelectric material development. Quarterly technical progress report, January 1, 1995--March 31, 1995

We have found that there is a limited range of solid solutions between the skutterudite compounds CoSb{sub 3} and RuSb{sub 2}Te (about 5% on each side). For the system (RuSb{sub 2}Te){sub x}(CoSb{sub 3}){sub 1-x}, preliminary results obtained on one n-type sample on the CoSb{sub 3}-rich side show that these alloys have good thermoelectric properties and a maximum ZT of about 0.89 was obtained at about 600 C. More experiments will be started to investigate the possibility of a broader range of miscibility in this system which would allow an even further decrease in the lattice thermal conductivity, resulting in better thermoelectric properties. IrSb{sub 3} and RuSb{sub 2}Te form a complete range of solid solutions. Hot-pressed samples in this system have shown p-type conductivity. The thermoelectric properties of these p-type alloys have been measured and results have shown that their potential for thermoelectric applications is limited mainly because of the relatively low Seebeck coefficient values for p-type materials. Efforts will be directed on preparing n-type samples of the same alloys by doping with various dopants such as Ni and Pd.
Date: July 1, 1995
Creator: Vandersande, J.W. & Caillat, T.
Object Type: Report
System: The UNT Digital Library