137Cs Inter-Plant Concentration Ratios Provide a Predictive Tool for Coral Atolls with Distinct Benefits Over Transfer Factors (open access)

137Cs Inter-Plant Concentration Ratios Provide a Predictive Tool for Coral Atolls with Distinct Benefits Over Transfer Factors

Inter-plant concentration ratios (IPCR), [Bq g{sup -1} {sup 137}Cs in coral atoll tree food-crops/Bq g{sup -1} {sup 137}Cs in leaves of native plant species whose roots share a common soil volume], can replace transfer factors (TF) to predict {sup 137}Cs concentration in tree food-crops in a contaminated area with an aged source term. The IPCR strategy has significant benefits relative to TF strategy for such purposes in the atoll ecosystem. IPCR strategy applied to specific assessments takes advantage of the fact tree roots naturally integrate 137Cs over large volumes of soil. Root absorption of {sup 137}Cs replaces large-scale, expensive soil sampling schemes to reduce variability in {sup 137}Cs concentration due to inhomogeneous radionuclide distribution. IPCR [drinking-coconut meat (DCM)/Scaevola (SCA) and Tournefortia (TOU) leaves (native trees growing on all atoll islands)] are log normally distributed (LND) with geometric standard deviation (GSD) = 1.85. TF for DCM from Enewetak, Eneu, Rongelap and Bikini Atolls are LND with GSD's of 3.5, 3.0, 2.7, and 2.1, respectively. TF GSD for Rongelap copra coconut meat is 2.5. IPCR of Pandanus fruit to SCA and TOU leaves are LND with GSD = 1.7 while TF GSD is 2.1. Because IPCR variability is much lower than TF …
Date: July 17, 2007
Creator: Robison, W L; Hamilton, T F; Bogen, K; Corado, C L & Kehl, S R
System: The UNT Digital Library
In-situ probing of lattice response in shock compressed materials using x-ray diffraction (open access)

In-situ probing of lattice response in shock compressed materials using x-ray diffraction

Lattice level measurements of material response under extreme conditions are required to build a phenomenological understanding of the shock response of solids. We have successfully used laser produced plasma x-ray sources coincident with laser driven shock waves to make in-situ measurements of the lattice response during shock compression for both single crystal and polycrystalline materials. Using a detailed analysis of shocked single crystal iron which has undergone the {alpha} - {var_epsilon} phase transition we can constrain the transition mechanism to be consistent with a compression and shuffle of alternate lattice planes.
Date: July 17, 2007
Creator: Hawreliak, J.; Butterfield, M.; Davies, H.; El-Dasher, B.; Higginbotham, A.; Kalantar, D. et al.
System: The UNT Digital Library
Thermal Neutron Capture Cross Sections of the PalladiumIsotopes (open access)

Thermal Neutron Capture Cross Sections of the PalladiumIsotopes

Precise gamma-ray thermal neutron capture cross sectionshave been measured at the Budapest Reactor for all elements withZ=1-83,92 except for He and Pm. These measurements and additional datafrom the literature been compiled to generate the Evaluated Gamma-rayActivation File (EGAF), which is disseminated by LBNL and the IAEA. Thesedata are nearly complete for most isotopes with Z<20 so the totalradiative thermal neutron capture cross sections can be determineddirectly from the decay scheme. For light isotopes agreement with therecommended values is generally satisfactory although large discrepanciesexist for 11B, 12,13C, 15N, 28,30Si, 34S, 37Cl, and 40,41K. Neutroncapture decay data for heavier isotopes are typically incomplete due tothe contribution of unresolved continuum transitions so only partialradiative thermal neutron capture cross sections can be determined. Thecontribution of the continuum to theneutron capture decay scheme arisesfrom a large number of unresolved levels and transitions and can becalculated by assuming that the fluctuations in level densities andtransition probabilities are statistical. We have calculated thecontinuum contribution to neutron capture decay for the palladiumisotopes with the Monte Carlo code DICEBOX. These calculations werenormalized to the experimental cross sections deexciting low excitationlevels to determine the total radiative thermal neutron capture crosssection. The resulting palladium cross sections values were determinedwith a precision …
Date: July 17, 2006
Creator: Firestone, R.B.; Krticka, M.; McNabb, D.P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T. et al.
System: The UNT Digital Library
Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves (open access)

Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves

Numerical models of geologic storage of carbon dioxide (CO2)in brine-bearing formations use characteristic curves to represent theinteractions of non-wetting-phase CO2 and wetting-phase brine. When aproblem includes both injection of CO2 (a drainage process) and itssubsequent post-injection evolution (a combination of drainage andwetting), hysteretic characteristic curves are required to correctlycapture the behavior of the CO2 plume. In the hysteretic formulation,capillary pressure and relative permeability depend not only on thecurrent grid-block saturation, but also on the history of the saturationin the grid block. For a problem that involves only drainage or onlywetting, a non-hysteretic formulation, in which capillary pressure andrelative permeability depend only on the current value of the grid-blocksaturation, is adequate. For the hysteretic formulation to be robustcomputationally, care must be taken to ensure the differentiability ofthe characteristic curves both within and beyond the turning-pointsaturations where transitions between branches of the curves occur. Twoexample problems involving geologic CO2 storage are simulated withTOUGH2, a multiphase, multicomponent code for flow and transport codethrough geological media. Both non-hysteretic and hysteretic formulationsare used, to illustrate the applicability and limitations ofnon-hysteretic methods.The first application considers leakage of CO2from the storage formation to the ground surface, while the secondexamines the role of heterogeneity within the storageformation.
Date: July 17, 2006
Creator: Doughty, Christine
System: The UNT Digital Library
Criteria for Determination of MC&A System Effectiveness (open access)

Criteria for Determination of MC&A System Effectiveness

The Nevada Test Site (NTS) is a test bed for implementation of the Safeguards First Principles Initiative (SFPI), a risk-based approach to Material Control & Accountability (MC&A) requirements. The Comprehensive Assessment of Safeguards Strategies (COMPASS) model is used to determine the effectiveness of safeguards systems under SFPI. Under this model, MC&A is divided into nine primary elements. Each element is divided into sub-elements. Then, each sub-element is assigned two values, effectiveness and contribution, that are used to calculate the rating. Effectiveness is a measure of sub-element implementation and how well it meets requirements. Contribution is a relative measure of the importance, and functions as a weighting factor. The COMPASS model provides the methodology for calculation of element and subelement, but not the actual criteria. Each site must develop its own criteria. For the rating to be meaningful, the effectiveness criteria must be objective and based on explicit, measurable criteria. Contribution (weights) must reflect the importance within the MC&A program. This paper details the NTS approach to system effectiveness and contribution values, and will cover the following: the basis for the ratings, an explanation of the contribution weights, and the objective, performance-based effectiveness criteria. Finally, the evaluation process will be described.
Date: July 17, 2008
Creator: Geneva Johnson, DeAnn Long, Ross Albright, John Wright
System: The UNT Digital Library
Milestones in EBIT Spectroscopy and Why it Almost Didn't Work (open access)

Milestones in EBIT Spectroscopy and Why it Almost Didn't Work

The EBIT spectroscopy that now seems routine would not be possible without considerable good luck in several areas of EBIT technology. Among these are x-ray background, ion cooling, neutral gas density, and electron current density and energy control. A favourable outcome in these areas has enabled clean x-ray spectra, sufficient intensity for high resolution spectroscopy, production of very high charge states, and a remarkable variety of spectroscopic measurements. During construction of the first EBIT 20 years ago, it was not clear that any of this was possible.
Date: July 17, 2007
Creator: Marrs, R E
System: The UNT Digital Library
Countermeasures to Urban Heat Islands: A Global View (open access)

Countermeasures to Urban Heat Islands: A Global View

An important milestone was passed this year when the fraction of the world's population living in cities exceeded 50%. This shift from the countryside to urban areas is certain to continue and, for many, the destination will be large cities. Already there are over 400 cities with populations greater than one million inhabitants and twenty cities with populations greater than ten million inhabitants. With a growing fraction of the population living in an urban environment, the unique aspects of an urban climate also rise in importance. These include features like air pollution and increased humidity. Another unique feature of the urban climate is the phenomenon of the urban heat island. The urban heat island phenomenon was first observed over one hundred years ago in northern latitude cities, where the city centers were slightly warmer than the suburbs. (Instantaneous communications probably played a role in its identification, much as it did for other weather-related events.) For these cities, a heat island was generally a positive effect because it resulted in reduced heating requirements during the winters. It was only in the 1960s, as air conditioning and heavy reliance on automobiles grew, that the negative impacts of heat islands became apparent. The …
Date: July 17, 2006
Creator: Meier, Alan
System: The UNT Digital Library
Displacement Current and Surface Flashover (open access)

Displacement Current and Surface Flashover

High-voltage vacuum insulator failure is generally due to surface flashover rather than insulator bulk breakdown. Vacuum surface flashover is widely believed to be initiated by a secondary electron emission avalanche along the vacuum-insulator interface. This process requires a physical mechanism to cause secondary electrons emitted from the insulator surface to return to that surface. Here, we show that when an insulator is subjected to a fast high-voltage pulse, the magnetic field due to displacement current through the insulator can provide this mechanism. This indicates the importance of the voltage pulse shape, especially the rise time, in the flashover initiation process.
Date: July 17, 2007
Creator: Harris, J. R.; Caporaso, G. J.; Blackfield, D. & Chen, Y. J.
System: The UNT Digital Library
SUSY Unparticle and Conformal Sequestering (open access)

SUSY Unparticle and Conformal Sequestering

We investigate unparticle physics with supersymmetry (SUSY). The SUSY breaking effects due to the gravity mediation induce soft masses for the SUSY unparticles and hence break the conformal invariance. The unparticle physics observable in near future experiments is only consistent if the SUSY breakingeffects from the hidden sector to the standard model sector are dominated by the gauge mediation, or if the SUSY breaking effects to the unparticle sector are sufficiently sequestered. We argue that the natural realization of the latter possibility is the conformal sequestering scenario.
Date: July 17, 2007
Creator: Nakayama, Yu & Nakayama, Yu
System: The UNT Digital Library
Nonrelativistic theory of heavy-ion collisions (open access)

Nonrelativistic theory of heavy-ion collisions

A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures.
Date: July 17, 1984
Creator: Bertsch, G.
System: The UNT Digital Library
Shock-interface interaction: Current research on the Richtmyer- Meshkov problem (open access)

Shock-interface interaction: Current research on the Richtmyer- Meshkov problem

The basis for the study of the evolution of a shocked interface stems from the question of the Rayleigh-Taylor (RT) instability (Taylor 1950). Starting in the late 18th century, the stability of an interface submitted to gravitational forces was investigated for the case in which the density of one of the materials across the interface was negligible compared to the other. Taylor analyzed the case in which the Atwood number (ratio of the difference of the densities to their sum) is less than 1, and the acceleration of the system is constant. He determined that the interface was unstable to small perturbations only if the direction of the acceleration normal to the interface coincides with that of the density gradient. Richtmyer (1960) extended Taylor's analysis to the case of an implusive acceleration. His results implied that the interface would be unstable irrespective of the relative orientation of the velocity impulse and the density gradient. His predictions were verified experimentally by Meshkov (1969), and the Richtmyer-Meshkov (RM) instability became a subject of research in its own right. Experimental, numerical, and theoretical works address this problem. The RM problem has been studied with both the shock-tube and laser experiments. In this paper, …
Date: July 17, 1991
Creator: Rupert, V.
System: The UNT Digital Library
Theoretical studies in tandem mirror physics (open access)

Theoretical studies in tandem mirror physics

Recent developments in six areas of tandem-mirror theory are explored. Specifically, FLR terms (including electric-field drift) have been added to our 3-D paraxial MHD equilibrium code. Our low-frequency MHD stability analysis with FLR, which previously included only m/sub theta/ = 1 rigid perturbations, has been extended to incorporate moderate m/sub theta/, rotational drive, finite-beta effects on wall stabilization, and the well-digging effect of energetic electrons by using three computational techniques. In addition, we have examined the microstability of relativistic electrons with a loss-cone distribution, emphasizing the whistler and cyclotron-maser instabilities. We have also studied techniques for controlling radial transport, including the floating of segmented end plates and the tuning of transition-region coils, and have quantified the residual transport in a tandem mirror with axisymmetric throttle coils. Earlier work on the effect of ECRH on potentials in thermal-barrier cells has been extended. The transition between the weak- and strong-heating regimes has been examined using Fokker-Planck and Monte Carlo codes; an analytic model for the potentials relative to the end wall has been developed. Finally, our investigation of drift-frequency pumping of thermal-barrier ions has demonstrated that pumping is optimized when the magnetic fluctuation is perpendicular to both the unperturbed field and the …
Date: July 17, 1984
Creator: Cohen, R. H.; Auerbach, S. P.; Baldwin, D. E.; Byers, J. A.; Chen, Y. J.; Cohen, B. I. et al.
System: The UNT Digital Library
Theoretical Progress for the Associated Production of a Higgs Boson With Heavy Quarks at Hadron Colliders. (open access)

Theoretical Progress for the Associated Production of a Higgs Boson With Heavy Quarks at Hadron Colliders.

The production of a Higgs boson in association with a pair of t{bar t} or b{bar b} quarks plays a very important role at both the Tevatron and the Large Hadron Collider. The theoretical prediction of the corresponding cross sections has been improved by including the complete next-to-leading order QCD corrections. After a brief introduction, we review the results obtained for both the Tevatron and the Large Hadron Collider.
Date: July 17, 2003
Creator: Dawson, S.; Jackson, C. B.; Orr, L. H.; Reina, L. & Wackeroth, D.
System: The UNT Digital Library
Moment Magnitude Calibration for the Eastern Mediterranean Region from Broadband Regional Coda Envelopes (open access)

Moment Magnitude Calibration for the Eastern Mediterranean Region from Broadband Regional Coda Envelopes

The following is an overview of results from ROA01-32 that focuses on an empirical method of calibrating stable seismic source moment-rate spectra derived from regional coda envelopes using broadband stations. The main goal was to develop a regional magnitude methodology that had the following properties: (1) it is tied to an absolute scale and is thus unbiased and transportable; (2) it can be tied seamlessly to the well-established teleseismic and regional catalogs; (3) it is applicable to small events using a sparse network of regional stations; (4) it is flexible enough to utilize S{sub n}-coda, L{sub g}-coda, or P-coda, whichever phase has the best signal-to-noise ratio. The results of this calibration yield source spectra and derived magnitudes that were more stable than any other direct-phase measure to date. Our empirical procedure accounted for all propagation, site, and S-to-coda transfer function effects. The resultant coda-derived moment-rate spectra were used to provide traditional band-limited magnitude (e.g., M{sub L}, m{sub b} etc.) as well as an unbiased, unsaturated magnitude (moment magnitude, M{sub w}) that is tied to a physical measure of earthquake size (i.e., seismic moment). We validated our results by comparing our coda-derived moment estimates with those obtained from long-period waveform modeling. …
Date: July 17, 2003
Creator: Mayeda, K; Eken, T; Hofstetter, A; Turkelli, N; O'Boyle, J; Orgulu, G et al.
System: The UNT Digital Library
Seismic Analysis Issues in Design Certification Applications for New Reactors (open access)

Seismic Analysis Issues in Design Certification Applications for New Reactors

The licensing framework established by the U.S. Nuclear Regulatory Commission under Title 10 of the Code of Federal Regulations (10 CFR) Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” provides requirements for standard design certifications (DCs) and combined license (COL) applications. The intent of this process is the early reso- lution of safety issues at the DC application stage. Subsequent COL applications may incorporate a DC by reference. Thus, the COL review will not reconsider safety issues resolved during the DC process. However, a COL application that incorporates a DC by reference must demonstrate that relevant site-specific de- sign parameters are within the bounds postulated by the DC, and any departures from the DC need to be justified. This paper provides an overview of several seismic analysis issues encountered during a review of recent DC applications under the 10 CFR Part 52 process, in which the authors have participated as part of the safety review effort.
Date: July 17, 2011
Creator: Miranda, M.; Morante, R. & Xu, J.
System: The UNT Digital Library
On the Use of Material-Dependent Damping in ANSYS for Mode Superposition Transient Analysis (open access)

On the Use of Material-Dependent Damping in ANSYS for Mode Superposition Transient Analysis

The mode superposition method is often used for dynamic analysis of complex structures, such as the seismic Category I structures in nuclear power plants, in place of the less efficient full method, which uses the full system matrices for calculation of the transient responses. In such applications, specification of material-dependent damping is usually desirable because complex structures can consist of multiple types of materials that may have different energy dissipation capabilities. A recent review of the ANSYS manual for several releases found that the use of material-dependent damping is not clearly explained for performing a mode superposition transient dynamic analysis. This paper includes several mode superposition transient dynamic analyses using different ways to specify damping in ANSYS, in order to determine how material-dependent damping can be specified conveniently in a mode superposition transient dynamic analysis.
Date: July 17, 2011
Creator: Nie, J. & Wei, X.
System: The UNT Digital Library
ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION (open access)

ESTIMATING IMPURITIES IN SURPLUS PLUTONIUM FOR DISPOSITION

The United States holds at least 61.5 metric tons (MT) of plutonium that is permanently excess to use in nuclear weapons programs, including 47.2 MT of weapons-grade plutonium. Surplus inventories will be stored safely by the Department of Energy (DOE) and then transferred to facilities that will prepare the plutonium for permanent disposition. The Savannah River National Laboratory (SRNL) operates a Feed Characterization program for the Office of Fissile Materials Disposition of the National Nuclear Security Administration and the DOE Office of Environmental Management. Many of the items that require disposition are only partially characterized, and SRNL uses a variety of techniques to predict the isotopic and chemical properties that are important for processing through the Mixed Oxide Fuel Fabrication Facility and alternative disposition paths. Recent advances in laboratory tools, including Prompt Gamma Analysis and Peroxide Fusion treatment, provide data on the existing inventories that will enable disposition without additional, costly sampling and destructive analysis.
Date: July 17, 2013
Creator: Allender, J. & Moore, E.
System: The UNT Digital Library
Structural Design Challenges in Design Certification Applications for New Reactors (open access)

Structural Design Challenges in Design Certification Applications for New Reactors

The licensing framework established by the U.S. Nuclear Regulatory Commission under Title 10 of the Code of Federal Regulations (10 CFR) Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” provides requirements for standard design certifications (DCs) and combined license (COL) applications. The intent of this process is the early reso- lution of safety issues at the DC application stage. Subsequent COL applications may incorporate a DC by reference. Thus, the COL review will not reconsider safety issues resolved during the DC process. However, a COL application that incorporates a DC by reference must demonstrate that relevant site-specific de- sign parameters are confined within the bounds postulated by the DC, and any departures from the DC need to be justified. This paper provides an overview of structural design chal- lenges encountered in recent DC applications under the 10 CFR Part 52 process, in which the authors have participated as part of the safety review effort.
Date: July 17, 2011
Creator: Miranda, M.; Braverman, J.; Wei, X.; Hofmayer, C. & Xu, J.
System: The UNT Digital Library
Field measurements to support IAEA procedures development for fuel assembly and fuel rod active length verification (open access)

Field measurements to support IAEA procedures development for fuel assembly and fuel rod active length verification

The activities performed in verification of reactor fuel rods and assemblies by International Atomic Energy Agency (IAEA) safeguards inspectors include measurements of the length of the enriched uranium sections in fuel assemblies and fuel rods. These measurements are normally made with the IAEA hand-held gamma monitor (HM-4) on fuel elements containing only enriched uranium. Many fuel rods currently in use contain natural uranium end sections and several different {sup 235}U enrichment zones. To support development of standard procedures for IAEA nondestructive assay (NDA) measurements, a field measurement campaign was carried out to evaluate the FM-4 measurements and to investigate the feasibility of extending the HM-4 measurements to fuel rods and assemblies containing both natural and enriched uranium sections. The results show that the enriched fuel length can be measured to within {plus_minus} 1 to 2 cm in the presence of natural uranium sections and to within {plus_minus} 0.5 = when only enriched uranium is present. Based on the results from these measurements, a standard procedure, ``Measurement of Active Fuel Length in Fuel Assemblies and Fuel Rods Using the HM-4,`` has been drafted for review by the IAEA.
Date: July 17, 1992
Creator: Belew, W. L.; Cooley, J. N. & Whitaker, J. M.
System: The UNT Digital Library
RAPID METHOD FOR DETERMINATION OF RADIOSTRONTIUM IN EMERGENCY MILK SAMPLES (open access)

RAPID METHOD FOR DETERMINATION OF RADIOSTRONTIUM IN EMERGENCY MILK SAMPLES

A new rapid separation method for radiostrontium in emergency milk samples was developed at the Savannah River Site (SRS) Environmental Bioassay Laboratory (Aiken, SC, USA) that will allow rapid separation and measurement of Sr-90 within 8 hours. The new method uses calcium phosphate precipitation, nitric acid dissolution of the precipitate to coagulate residual fat/proteins and a rapid strontium separation using Sr Resin (Eichrom Technologies, Darien, IL, USA) with vacuum-assisted flow rates. The method is much faster than previous method that use calcination or cation exchange pretreatment, has excellent chemical recovery, and effectively removes beta interferences. When a 100 ml sample aliquot is used, the method has a detection limit of 0.5 Bq/L, well below generic emergency action levels.
Date: July 17, 2008
Creator: Maxwell, S. & Culligan, B.
System: The UNT Digital Library
Passive Imaging of Warhead-Like Configurations Using Cosmic-Ray Muons (open access)

Passive Imaging of Warhead-Like Configurations Using Cosmic-Ray Muons

Cosmic-Muon-Based Interrogation has untapped potential for national security. This presentation describes muons-based passive interrogation techniques.
Date: July 17, 2012
Creator: Schwellenbach, D.
System: The UNT Digital Library
TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE (open access)

TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE

Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the properties of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost …
Date: July 17, 2007
Creator: Louthan, M
System: The UNT Digital Library
Wakefields in the LCLS Undulator Transitions (open access)

Wakefields in the LCLS Undulator Transitions

For a short bunch in an elliptical collimator we demonstrate that, as in a purely round collimator, the wake can be estimated from the primary fields of the beam alone. We obtain the wakes in the LCLS rectangular-to-round, undulator transitions using a hybrid method that includes indirect numerical (field) integration and an analytical potential energy term. For the LCLS 1 nC bunch charge configuration, we find the wake-induced energy change in the transitions to be small compared to that due to the resistance of the beam pipe walls.
Date: July 17, 2006
Creator: Bane, K. L. F. & Zagorodov, I.
System: The UNT Digital Library
Wakefield Calculations for 3D Collimators (open access)

Wakefield Calculations for 3D Collimators

Using a recently developed time domain numerical approach we calculate the short-range geometric wakefields of 3D collimators and compare with analytical models. We find, in the diffractive regime, that the transverse mode kick factor can be approximated from the change in field energy between the beam pipe and the collimator if the collimator is long, or using a ''field clipping'' estimate if it is short. For collimators of past and present measurements at SLAC, numerical, analytical, and measurement results are compared.
Date: July 17, 2006
Creator: Zagorodnov, I.; /DESY & Bane, K.L.F.
System: The UNT Digital Library