50,944 Matching Results

Results open in a new window/tab.

0.25mm-Thick CCD Packaging for the Dark Energy Survey Camera Array (open access)

0.25mm-Thick CCD Packaging for the Dark Energy Survey Camera Array

Abstract: The Dark Energy Survey Camera focal plane array will consist of 62 2k x 4k CCDs with a pixel size of 15 microns and a silicon thickness of 250 microns for use at wavelengths between 400 and 1000 nm. Bare CCD die will be received from the Lawrence Berkeley National Laboratory (LBNL). At the Fermi National Accelerator Laboratory, the bare die will be packaged into a custom back-side-illuminated module design. Cold probe data from LBNL will be used to select the CCDs to be packaged. The module design utilizes an aluminum nitride readout board and spacer and an Invar foot. A module flatness of 3 microns over small (1 sqcm) areas and less than 10 microns over neighboring areas on a CCD are required for uniform images over the focal plane. A confocal chromatic inspection system is being developed to precisely measure flatness over a grid up to 300 x 300 mm. This system will be utilized to inspect not only room-temperature modules, but also cold individual modules and partial arrays through flat dewar windows.
Date: 2006-06~
Creator: Derylo, Greg; Diehl, H. Thomas & Estrada, Juan
Object Type: Article
System: The UNT Digital Library
0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology (open access)

0.52eV Quaternary InGaAsSb Thermophotovoltaic Diode Technology

Thermophotovoltaic (TPV) diodes fabricated from 0.52eV lattice-matched InGaAsSb alloys are grown by Metal Organic Vapor Phase Epitaxy (MOVPE) on GaSb substrates. 4cm{sup 2} multi-chip diode modules with front-surface spectral filters were tested in a vacuum cavity and attained measured efficiency and power density of 19% and 0.58 W/cm{sup 2} respectively at operating at temperatures of T{sub radiator} = 950 C and T{sub diode} = 27 C. Device modeling and minority carrier lifetime measurements of double heterostructure lifetime specimens indicate that diode conversion efficiency is limited predominantly by interface recombination and photon energy loss to the GaSb substrate and back ohmic contact. Recent improvements to the diode include lattice-matched p-type AlGaAsSb passivating layers with interface recombination velocities less than 100 cm/s and new processing techniques enabling thinned substrates and back surface reflectors. Modeling predictions of these improvements to the diode architecture indicate that conversion efficiencies from 27-30% and {appro