Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS). (open access)

Acceleration of dormant storage effects to address the reliability of silicon surface micromachined Micro-Electro-Mechanical Systems (MEMS).

Qualification of microsystems for weapon applications is critically dependent on our ability to build confidence in their performance, by predicting the evolution of their behavior over time in the stockpile. The objective of this work was to accelerate aging mechanisms operative in surface micromachined silicon microelectromechanical systems (MEMS) with contacting surfaces that are stored for many years prior to use, to determine the effects of aging on reliability, and relate those effects to changes in the behavior of interfaces. Hence the main focus was on 'dormant' storage effects on the reliability of devices having mechanical contacts, the first time they must move. A large number ({approx}1000) of modules containing prototype devices and diagnostic structures were packaged using the best available processes for simple electromechanical devices. The packaging processes evolved during the project to better protect surfaces from exposure to contaminants and water vapor. Packages were subjected to accelerated aging and stress tests to explore dormancy and operational environment effects on reliability and performance. Functional tests and quantitative measurements of adhesion and friction demonstrated that the main failure mechanism during dormant storage is change in adhesion and friction, precipitated by loss of the fluorinated monolayer applied after fabrication. The data indicate …
Date: June 1, 2006
Creator: Cox, James V.; Candelaria, Sam A.; Dugger, Michael Thomas; Duesterhaus, Michelle Ann; Tanner, Danelle Mary; Timpe, Shannon J. et al.
Object Type: Report
System: The UNT Digital Library
Enhanced geothermal systems (EGS) using CO2 as working fluid - Anovelapproach for generating renewable energy with simultaneoussequestration of carbon (open access)

Enhanced geothermal systems (EGS) using CO2 as working fluid - Anovelapproach for generating renewable energy with simultaneoussequestration of carbon

Responding to the need to reduce atmospheric emissions of carbon dioxide, Donald Brown (2000) proposed a novel enhanced geothermal systems (EGS) concept that would use CO{sub 2} instead of water as heat transmission fluid, and would achieve geologic sequestration of CO{sub 2} as an ancillary benefit. Following up on his suggestion, we have evaluated thermophysical properties and performed numerical simulations to explore the fluid dynamics and heat transfer issues in an engineered geothermal reservoir that would be operated with CO{sub 2}. We find that CO{sub 2} is superior to water in its ability to mine heat from hot fractured rock. CO{sub 2} also has certain advantages with respect to wellbore hydraulics, where larger compressibility and expansivity as compared to water would increase buoyancy forces and would reduce the parasitic power consumption of the fluid circulation system. While the thermal and hydraulic aspects of a CO{sub 2}-EGS system look promising, major uncertainties remain with regard to chemical interactions between fluids and rocks. An EGS system running on CO{sub 2} has sufficiently attractive features to warrant further investigation.
Date: June 7, 2006
Creator: Pruess, Karsten
Object Type: Article
System: The UNT Digital Library
Demonstration of Femtosecond-Phase Stabilization in 2 km OpticalFiber (open access)

Demonstration of Femtosecond-Phase Stabilization in 2 km OpticalFiber

Long-term phase drifts of less than a femtosecond per hour have been demonstrated in a 2 km length of single-mode optical fiber, stabilized interferometrically at 1530 nm. Recent improvements include a wide-band phase detector that reduces the possibility of fringe jumping due to fast external perturbations of the fiber and locking of the master CW laser wavelength to an atomic absorption line. Mode-locked lasers may be synchronized using two wavelengths of the comb, multiplexed over one fiber, each wavelength individually interferometrically stabilized.
Date: June 1, 2007
Creator: Staples, J. W.; Wilcox, R. & Byrd, J. M.
Object Type: Article
System: The UNT Digital Library
Transatlantic transport of Fermilab 3.9 GHz cryomodule for TTF/FLASH to DESY (open access)

Transatlantic transport of Fermilab 3.9 GHz cryomodule for TTF/FLASH to DESY

In an exchange of technology agreement, Fermilab built and will deliver a 3.9 GHz (3rd harmonic) cryomodule to DESY to be installed in the TTF/FLASH beamline. This cryomodule delivery will involve a combination of flatbed air ride truck and commercial aircraft transport to Hamburg Germany. A description of the isolation and damping systems that maintain alignment during transport and protect fragile components is provided. Initially, transport and corresponding alignment stability studies were performed in order to assess the risk associated with transatlantic travel of a fully assembled cryomodule. Shock loads were applied to the cryomodule by using a coldmass mockup to prevent subjecting actual critical components (such as the cavities and input couplers) to excessive forces. Accumulative and peak shock loads were applied through over-the-road testing and using a pendulum hammer apparatus, respectively. Finite Element Analysis (FEA) studies were implemented to define location of instrumentation for transport studies and provide modal frequencies and shapes. Shock and vibration measurement results of transport studies and stabilization techniques are discussed.
Date: June 1, 2008
Creator: McGee, M. W.; Vocean, V.; Grimm, C. & Schappert, W.
Object Type: Article
System: The UNT Digital Library
Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions. (open access)

Thermal-fluid and electrochemical modeling and performance study of a planar solid oxide electrolysis cell : analysis on SOEC resistances, size, and inlet flow conditions.

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) techniques. The major challenges facing commercialization of steam electrolysis technology are related to efficiency, cost, and durability of the SOECs. The goal of this effort is to guide the design and optimization of performance for high temperature electrolysis (HTE) systems. An SOEC module developed by FLUENT Inc. as part of their general CFD code was used for the SOEC analysis by INL. ANL has developed an independent SOEC model that combines the governing electrochemical mechanisms based on first principals to the heat transfer and fluid dynamics in the operation of SOECs. The ANL model was embedded into the commercial STAR-CD CFD software, and is being used for the analysis of SOECs by ANL. The FY06 analysis performed by ANL and reported here covered the influence of electrochemical properties, SOEC component resistances and their contributing factors, SOEC size and inlet flow conditions, and SOEC flow configurations on the efficiency and expected durability of these systems. Some of the important findings from the ANL analysis are: (1) Increasing the inlet mass …
Date: June 25, 2008
Creator: Yildiz, B.; Smith, J. & Sofu, T.
Object Type: Report
System: The UNT Digital Library
Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein (open access)

Isotopomer distributions in amino acids from a highly expressed protein as a proxy for those from total protein

{sup 13}C-based metabolic flux analysis provides valuable information about bacterial physiology. Though many biological processes rely on the synergistic functions of microbial communities, study of individual organisms in a mixed culture using existing flux analysis methods is difficult. Isotopomer-based flux analysis typically relies on hydrolyzed amino acids from a homogeneous biomass. Thus metabolic flux analysis of a given organism in a mixed culture requires its separation from the mixed culture. Swift and efficient cell separation is difficult and a major hurdle for isotopomer-based flux analysis of mixed cultures. Here we demonstrate the use of a single highly-expressed protein to analyze the isotopomer distribution of amino acids from one organism. Using the model organism E. coli expressing a plasmid-borne, his-tagged Green Fluorescent Protein (GFP), we show that induction of GFP does not affect E. coli growth kinetics or the isotopomer distribution in nine key metabolites. Further, the isotopomer labeling patterns of amino acids derived from purified GFP and total cell protein are indistinguishable, indicating that amino acids from a purified protein can be used to infer metabolic fluxes of targeted organisms in a mixed culture. This study provides the foundation to extend isotopomer-based flux analysis to study metabolism of individual strains …
Date: June 27, 2008
Creator: Shaikh, Afshan; Shaikh, Afshan S.; Tang, Yinjie; Mukhopadhyay, Aindrila & Keasling, Jay D.
Object Type: Article
System: The UNT Digital Library
Initial Study Comparing the Radiating Divertor Behavior in Single-Null and Double-Null Plasmas in DIII-D (open access)

Initial Study Comparing the Radiating Divertor Behavior in Single-Null and Double-Null Plasmas in DIII-D

'Puff and pump' radiating divertor scenarios [1,2] were applied to upper SN and DN H-mode plasmas. Under similar operating conditions, argon (Ar) accumulated in the main plasma of single-null (SN) plasmas more rapidly and reached a higher steady-state concentration when the B x {del}B ion drift direction was toward the divertor than when the B x {del}B ion drift direction was out of the divertor. The initial rate that Ar accumulated inside double-null (DN) plasmas was more than twice that of comparably-prepared SNs with the same B x {del}B direction. One way to reduce power loading at the divertor targets is to 'seed' the divertor plasma with impurities that radiatively reduce the conducted power. Studies have shown that the concentration of impurities in the divertor are increased by raising the flow of deuterium ions (D{sup +}) into the divertor by a combination of upstream deuterium gas puffing and active particle exhaust at the divertor targets, i.e., puff-and-pump. An enhanced D{sup +} particle flow toward the divertor targets exerts a frictional drag on impurities, and inhibits their escape from the divertor. A puff-and-pump approach using Ar as the impurity was successfully applied in recent DIII-D experiments to SN plasmas [3] while …
Date: June 27, 2007
Creator: Petrie, T; Brooks, N; Fenstermacher, M; Groth, M; Hyatt, A; Isler, R et al.
Object Type: Article
System: The UNT Digital Library
Descriptive Model of Generic WAMS (open access)

Descriptive Model of Generic WAMS

The Department of Energy’s (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nation’s electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the milestone to develop a generic WAMS model description that will provide a basis for the security analysis planned in the next phase of this study.
Date: June 1, 2007
Creator: Hauer, John F. & DeSteese, John G.
Object Type: Report
System: The UNT Digital Library
NIF: A Path to Fusion Energy (open access)

NIF: A Path to Fusion Energy

Fusion energy has long been considered a promising, clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long-term research goal since the invention of the first laser in 1960. The National Ignition Facility (NIF) is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at Lawrence Livermore National Laboratory (LLNL) and the OMEGA laser at the University of Rochester, as well as smaller systems around the world. NIF is a 192-beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009, and ignition experiments will start in 2010. When completed, NIF will produce up to 1.8 MJ of 0.35-{micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser …
Date: June 1, 2007
Creator: Moses, Edward
Object Type: Article
System: The UNT Digital Library
SYNTHESIS OF THE FULLY PROTECTED PHOSPHORAMIDITE OF THE BENZENE-DNA ADDUCT, N2- (4-HYDROXYPHENYL)-2'-DEOXYGUANOSINE AND INCORPORATION OF THE LATER INTO DNA OLIGOMERS (open access)

SYNTHESIS OF THE FULLY PROTECTED PHOSPHORAMIDITE OF THE BENZENE-DNA ADDUCT, N2- (4-HYDROXYPHENYL)-2'-DEOXYGUANOSINE AND INCORPORATION OF THE LATER INTO DNA OLIGOMERS

N2-(4-Hydroxyphenyl)-2'-deoxyguanosine-5'-O-DMT-3'-phosphoramidite has been synthesized and used to incorporate the N2-(4-hydroxyphenyl)-2'-dG (N2-4-HOPh-dG) into DNA, using solid-state synthesis technology. The key step to obtaining the xenonucleoside is a palladium (Xantphos-chelated) catalyzed N2-arylation (Buchwald-Hartwig reaction) of a fully protected 2'-deoxyguanosine derivative by 4-isobutyryloxybromobenzene. The reaction proceeded in good yield and the adduct was converted to the required 5'-O-DMT-3'-O-phosphoramidite by standard methods. The latter was used to synthesize oligodeoxynucleotides in which the N2-4-HOPh-dG adduct was incorporated site-specifically. The oligomers were purified by reverse-phase HPLC. Enzymatic hydrolysis and HPLC analysis confirmed the presence of this adduct in the oligomers.
Date: June 9, 2008
Creator: Chenna, Ahmed; Gupta, Ramesh C.; Bonala, Radha R.; Johnson, Francis & Huang, Bo
Object Type: Article
System: The UNT Digital Library
Target life time of laser ion source for low charge state ion production (open access)

Target life time of laser ion source for low charge state ion production

Laser ion source (LIS) produces ions by irradiating pulsed high power laser shots onto the solid state target. For the low charge state ion production, laser spot diameter on the target can be over several millimeters using a high power laser such as Nd:YAG laser. In this case, a damage to the target surface is small while there is a visible crater in case of the best focused laser shot for high charge state ion production (laser spot diameter can be several tens of micrometers). So the need of target displacement after each laser shot to use fresh surface to stabilize plasma is not required for low charge state ion production. We tested target lifetime using Nd:YAG laser with 5 Hz repetition rate. Also target temperature and vacuum condition were recorded during experiment. The feasibility of a long time operation was verified.
Date: June 23, 2008
Creator: Kanesue,T.; Tamura, J. & Okamura, M.
Object Type: Article
System: The UNT Digital Library
Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses (open access)

Long Beach Transit: Two-Year Evaluation of Gasoline-Electric Hybrid Transit Buses

This report focuses on a gasoline-electric hybrid transit bus propulsion system. The propulsion system is an alternative to standard diesel buses and allows for reductions in emissions (usually focused on reductions of particulate matter and oxides of nitrogen) and petroleum use. Gasoline propulsion is an alternative to diesel fuel and hybrid propulsion allows for increased fuel economy, which ultimately results in reduced petroleum use.
Date: June 1, 2008
Creator: Lammert, M.
Object Type: Report
System: The UNT Digital Library
Modeling the Benefits of Storage Technologies to Wind Power (open access)

Modeling the Benefits of Storage Technologies to Wind Power

Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. …
Date: June 1, 2008
Creator: Sullivan, P.; Short, W. & Blair, N.
Object Type: Article
System: The UNT Digital Library
Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation (open access)

Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation

Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has highlighted the need for research into the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In the present work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 C and 700 C for both short (100 hours) and long (5,000 hours) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance in the short term tests. For longer exposures, increasing the aluminum concentration was beneficial to the corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in lower corrosion kinetics. A classification of the corrosion products that developed on these alloys is presented. Scanning transmission electron microscopy (STEM) of the as-corroded coupons revealed that chromium was able to form chromium sulfides only on the higher aluminum alloy, thereby preventing the formation of deleterious iron sulfides. When the aluminum concentration was too low to permit selective oxidation of …
Date: June 14, 2007
Creator: Marder, Arnold R.
Object Type: Report
System: The UNT Digital Library
INVESTIGATION OF THE PRESENCE OF DRUGSTORE BEETLES WITHIN CELOTEX ASSEMBLIES IN RADIOACTIVE MATERIAL PACKAGINGS (open access)

INVESTIGATION OF THE PRESENCE OF DRUGSTORE BEETLES WITHIN CELOTEX ASSEMBLIES IN RADIOACTIVE MATERIAL PACKAGINGS

During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles, (Stegobium paniceum (L.) Coleoptera: Anobiidae), were found within the fiberboard subassemblies of two 9975 Shipping Packages. Initial indications were that the beetles were feeding on the Celotex{trademark} assemblies within the package. Celotex{trademark} fiberboard is used in numerous radioactive material packages serving as both a thermal insulator and an impact absorber for both normal conditions of transport and hypothetical accident conditions. The Department of Energy's Packaging Certification Program (EM-63) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex{trademark}. The Savannah River National Laboratory is conducting the investigation with entomological expertise provided by Clemson University. The two empty 9975 shipping packages were transferred to the Savannah River National Laboratory in the fall of 2007. This paper will provide details and results of the ongoing investigation.
Date: June 4, 2008
Creator: Loftin, B & Glenn Abramczyk, G
Object Type: Article
System: The UNT Digital Library
Validation of a simple turbulence model suitable for closure of temporally-filtered Navier-Stokes equations using a helium plume. (open access)

Validation of a simple turbulence model suitable for closure of temporally-filtered Navier-Stokes equations using a helium plume.

A validation study has been conducted for a turbulence model used to close the temporally filtered Navier Stokes (TFNS) equations. A turbulence model was purposely built to support fire simulations under the Accelerated Strategic Computing (ASC) program. The model was developed so that fire transients could be simulated and it has been implemented in SIERRA/Fuego. The model is validated using helium plume data acquired for the Weapon System Certification Campaign (C6) program in the Fire Laboratory for Model Accreditation and Experiments (FLAME). The helium plume experiments were chosen as the first validation problem for SIERRA/Fuego because they embody the first pair-wise coupling of scalar and momentum fields found in fire plumes. The validation study includes solution verification through grid and time step refinement studies. A formal statistical comparison is used to assess the model uncertainty. The metric uses the centerline vertical velocity of the plume. The results indicate that the simple model is within the 95% confidence interval of the data for elevations greater than 0.4 meters and is never more than twice the confidence interval from the data. The model clearly captures the dominant puffing mode in the fire but under resolves the vorticity field. Grid dependency of the …
Date: June 1, 2005
Creator: Tieszen, Sheldon Robert; Domino, Stefan Paul & Black, Amalia Rebecca
Object Type: Report
System: The UNT Digital Library
A korarchaeal genome reveals insights into the evolution of the Archaea (open access)

A korarchaeal genome reveals insights into the evolution of the Archaea

The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name,"Candidatus Korarchaeum cryptofilum," which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49percent. Of the 1,617 predicted protein-coding genes, 1,382 (85percent) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA …
Date: June 5, 2008
Creator: Anderson, Iain J; Elkins, James G.; Podar, Mircea; Graham, David E.; Makarova, Kira S.; Wolf, Yuri et al.
Object Type: Article
System: The UNT Digital Library
Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet) (open access)

Economic Benefits, Carbon Dioxide (CO2) Emissions Reductions, and Water Conservation Benefits from 1,000 Megawatts (MW) of New Wind Power in Virginia (Fact Sheet)

The U.S. Department of Energy's Wind Powering America Program is committed to educating state-level policy makers and other stakeholders about the economic, CO2 emissions, and water conservation impacts of wind power. This analysis highlights the expected impacts of 1000 MW of wind power in Virginia. We forecast the cumulative economic benefits from 1000 MW of development in Virginia to be $1.2 billion, annual CO2 reductions are estimated at 3.0 million tons, and annual water savings are 1,600 million gallons.
Date: June 1, 2008
Creator: unknown
Object Type: Report
System: The UNT Digital Library
Toward a Deeper Understanding of Plutonium (open access)

Toward a Deeper Understanding of Plutonium

Plutonium is a very complex element lying near the middle of the actinide series. On the lower atomic number side of Pu is the element neptunium; its 5f electrons are highly delocalized or itinerant, participating in metallic-like bonding. The electrons in americium, the element to the right of Pu, are localized and do not participant significantly in the bonding. Plutonium is located directly on this rather abrupt transition. In the low-temperature {alpha} phase ground state, the five 5f electrons are mostly delocalized leading to a highly dense monoclinic crystal structure. Increases in temperature take the unalloyed plutonium through a series of five solid-state allotropic phase transformations before melting. One of the high temperature phases, the close-packed face centered cubic {delta} phase, is the least dense of all the phases, including the liquid. Alloying the Pu with Group IIIA elements such as aluminum or gallium retains the {delta} phase in a metastable state at ambient conditions. Ultimately, this metastable {delta} phase will decompose via a eutectoid transformation to {alpha} + Pu{sub 3}Ga. These low solute-containing {delta}-phase Pu alloys are also metastable with respect to low temperature excursions or increases in pressure and will transform to a monoclinic crystal structure at low …
Date: June 21, 2007
Creator: Schwartz, A J & Wolfer, W G
Object Type: Article
System: The UNT Digital Library
Sculpting the shape of semiconductor heteroepitaxial islands: fromdots to rods (open access)

Sculpting the shape of semiconductor heteroepitaxial islands: fromdots to rods

In the Ge on Si model heteroepitaxial system, metal patterns on the silicon surface provide unprecedented control over the morphology of highly ordered Ge islands. Island shape including nanorods and truncated pyramids is set by the metal species and substrate orientation. Analysis of island faceting elucidates the prominent role of the metal in promoting growth of preferred facet orientations while investigations of island composition and structure reveal the importance of Si-Ge intermixing in island evolution. These effects reflect a remarkable combination of metal-mediated growth phenomena that may be exploited to tailor the functionality of island arrays in heteroepitaxial systems.
Date: June 20, 2006
Creator: Robinson, J. T.; Walko, D. A.; Arms, D. A.; Tinberg, D. S.; Evans, P. G.; Cao, Y. et al.
Object Type: Article
System: The UNT Digital Library
Ambient Radon-222 Monitoring in Amargosa Valley, Nevada (open access)

Ambient Radon-222 Monitoring in Amargosa Valley, Nevada

As part of a program to characterize and baseline selected environmental parameters in the region around the proposed repository at Yucca Mountain, Nevada, ambient radon-222 monitoring was conducted in the rural community of Amargosa Valley, the community closest to the proposed repository site. Passive integrating radon monitors and a continuous radon monitoring instrument were deployed adjacent to the Community Environmental Monitoring Program (CEMP) (http://www.cemp.dri.edu/index.html) station located in the Amargosa Valley Community Center near the library. The CEMP station provided real-time ambient gamma exposure and meteorological data used to correct the integrated radon measurements as well as verify meteorological data collected by the continuous radon monitoring instrument. Additionally, different types of environmental enclosures that housed the monitors and instrument were used to determine if particular designs influenced the ambient radon measurements.
Date: June 5, 2008
Creator: Karr, L. H.; Tappen, J. J.; Shafer, D. & Gray, K. J.
Object Type: Article
System: The UNT Digital Library
Computational Biology, Advanced Scientific Computing, and Emerging Computational Architectures (open access)

Computational Biology, Advanced Scientific Computing, and Emerging Computational Architectures

This CRADA was established at the start of FY02 with $200 K from IBM and matching funds from DOE to support post-doctoral fellows in collaborative research between International Business Machines and Oak Ridge National Laboratory to explore effective use of emerging petascale computational architectures for the solution of computational biology problems. 'No cost' extensions of the CRADA were negotiated with IBM for FY03 and FY04.
Date: June 27, 2007
Creator: unknown
Object Type: Report
System: The UNT Digital Library
An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology (open access)

An Overview of Current and Past W-UO[2] CERMET Fuel Fabrication Technology

Studies dating back to the late 1940s performed by a number of different organizations and laboratories have established the major advantages of Nuclear Thermal Propulsion (NTP) systems, particularly for manned missions. A number of NTP projects have been initiated since this time; none have had any sustained fuel development work that appreciably contributed to fuel fabrication or performance data from this era. As interest in these missions returns and previous space nuclear power researchers begin to retire, fuel fabrication technologies must be revisited, so that established technologies can be transferred to young researchers seamlessly and updated, more advanced processes can be employed to develop successful NTP fuels. CERMET fuels, specifically W-UO2, are of particular interest to the next generation NTP plans since these fuels have shown significant advantages over other fuel types, such as relatively high burnup, no significant failures under severe transient conditions, capability of accommodating a large fission product inventory during irradiation and compatibility with flowing hot hydrogen. Examples of previous fabrication routes involved with CERMET fuels include hot isostatic pressing (HIPing) and press and sinter, whereas newer technologies, such as spark plasma sintering, combustion synthesis and microsphere fabrication might be well suited to produce high quality, effective …
Date: June 1, 2007
Creator: Burkes, Douglas E.; Wachs, Daniel M.; Werner, James E. & Howe, Steven D.
Object Type: Article
System: The UNT Digital Library
The effect of head-on beam-beam compensation on the stochastic boundaries and particle diffusion in RHIC. (open access)

The effect of head-on beam-beam compensation on the stochastic boundaries and particle diffusion in RHIC.

To compensate the effects from the head-on beam-beam interactions in the polarized proton operation in the Relativistic Heavy Ion Collider (RHIC), an electron lens (elens) is proposed to collide head-on with the proton beam. We used an extended version of SixTrack for multiparticle beam-beam simulation in order to study the effect of the e-lens on the stochastic boundary and also on diffusion. The stochastic boundary was analyzed using Lyapunov exponents and the diffusion was characterized as the increase in the rms spread of the action. For both studies the simulations were performed with and without the e-lens and with full and partial compensation. Using the simulated values of the diffusion an attempt to calculate the emittance growth rate is presented.
Date: June 23, 2008
Creator: Abreu,N.; Beebe-Wang, J.; FischW; Luo, Y. & Robert-Demolaize, G.
Object Type: Article
System: The UNT Digital Library