Addendum to the Closure Report for Corrective Action Unit 92: Area 6 Decon Pond Facility, Nevada Test Site, Nevada (open access)

Addendum to the Closure Report for Corrective Action Unit 92: Area 6 Decon Pond Facility, Nevada Test Site, Nevada

The following is an addendum to the 'Closure Report for Corrective Action Unit 92: Area 6 Decontamination Pond, Nevada Test Site, Nevada', DOE/NV/11718--306, dated April 1999. This addendum includes Use Restriction Information forms and survey maps for CAS 06-04-01, Decon Pad Oil/Water Separator, and CAS 06-05-02, Decontamination Pond (RCRA), that were inadvertently left out of the Closure Report when it was published as a final document.
Date: June 1, 2007
Creator: National Security Technologies, LLC
System: The UNT Digital Library
New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B (open access)

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.
Date: June 12, 2007
Creator: Nelson, L. O.
System: The UNT Digital Library
Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success (open access)

Advanced Amine Solvent Formulations and Process Integration for Near-Term CO2 Capture Success

This Phase I SBIR project investigated the economic and technical feasibility of advanced amine scrubbing systems for post-combustion CO2 capture at coal-fired power plants. Numerous combinations of advanced solvent formulations and process configurations were screened for energy requirements, and three cases were selected for detailed analysis: a monoethanolamine (MEA) base case and two “advanced” cases: an MEA/Piperazine (PZ) case, and a methyldiethanolamine (MDEA) / PZ case. The MEA/PZ and MDEA/PZ cases employed an advanced “double matrix” stripper configuration. The basis for calculations was a model plant with a gross capacity of 500 MWe. Results indicated that CO2 capture increased the base cost of electricity from 5 cents/kWh to 10.7 c/kWh for the MEA base case, 10.1 c/kWh for the MEA / PZ double matrix, and 9.7 c/kWh for the MDEA / PZ double matrix. The corresponding cost per metric tonne CO2 avoided was 67.20 $/tonne CO2, 60.19 $/tonne CO2, and 55.05 $/tonne CO2, respectively. Derated capacities, including base plant auxiliary load of 29 MWe, were 339 MWe for the base case, 356 MWe for the MEA/PZ double matrix, and 378 MWe for the MDEA / PZ double matrix. When compared to the base case, systems employing advanced solvent formulations and …
Date: June 28, 2007
Creator: Fisher, Kevin S.; Searcy, Katherine; Rochelle, Gary T.; Ziaii, Sepideh & Schubert, Craig
System: The UNT Digital Library
Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications (open access)

Novel Approaches to High-Efficiency III-V Nitride Heterostructure Emitters for Next-Generation Lighting Applications

We report research activities and technical progress on the development of high-efficiency long wavelength ({lambda} {approx} 540nm) green light emitting diodes which covers whole years of the three-year program 'Novel approaches to high-efficiency III-V nitride heterostructure emitters for next-generation lighting applications'. The research activities were focused on the development of p-type layer that has less/no detrimental thermal annealing effect on as well as excellent structural and electrical properties and the development of green LED active region that has superior luminescence quality for {lambda}{approx}540nm green LEDs. We have also studied (1) the thermal annealing effect on blue and green LED active region during the p-type layer growth; (2) the effect of growth parameters and structural factors for LED active region on electroluminescence properties; (3) the effect of substrates and orientation on electrical and electro-optical properties of green LEDs. As a progress highlight, we obtained green-LED-active-region-friendly In{sub 0.04}Ga{sub 0.96}N:Mg exhibiting low resistivity with higher hole concentration (p=2.0 x 10{sup 18} cm{sup -3} and a low resistivity of 0.5 {omega}-cm) and improved optical quality green LED active region emitting at {approx}540nm by electroluminescence. The LEDs with p-InGaN layer can act as a quantum-confined Stark effect mitigation layer by reducing strain in the QW. …
Date: June 30, 2007
Creator: Dupuis, Russell
System: The UNT Digital Library
Descriptive Model of Generic WAMS (open access)

Descriptive Model of Generic WAMS

The Department of Energy’s (DOE) Transmission Reliability Program is supporting the research, deployment, and demonstration of various wide area measurement system (WAMS) technologies to enhance the reliability of the Nation’s electrical power grid. Pacific Northwest National Laboratory (PNNL) was tasked by the DOE National SCADA Test Bed Program to conduct a study of WAMS security. This report represents achievement of the milestone to develop a generic WAMS model description that will provide a basis for the security analysis planned in the next phase of this study.
Date: June 1, 2007
Creator: Hauer, John F. & DeSteese, John G.
System: The UNT Digital Library
Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation (open access)

Enhanced High Temperature Corrosion Resistance in Advanced Fossil Energy Systems by Nano-Passive Layer Formation

Due to their excellent corrosion resistance, iron aluminum alloys are currently being considered for use as weld claddings in fossil fuel fired power plants. The susceptibility to hydrogen cracking of these alloys at higher aluminum concentrations has highlighted the need for research into the effect of chromium additions on the corrosion resistance of lower aluminum alloys. In the present work, three iron aluminum alloys were exposed to simulated coal combustion environments at 500 C and 700 C for both short (100 hours) and long (5,000 hours) isothermal durations. Scanning electron microscopy was used to analyze the corrosion products. All alloys exhibited excellent corrosion resistance in the short term tests. For longer exposures, increasing the aluminum concentration was beneficial to the corrosion resistance. The addition of chromium to the binary iron aluminum alloy prevented the formation iron sulfide and resulted in lower corrosion kinetics. A classification of the corrosion products that developed on these alloys is presented. Scanning transmission electron microscopy (STEM) of the as-corroded coupons revealed that chromium was able to form chromium sulfides only on the higher aluminum alloy, thereby preventing the formation of deleterious iron sulfides. When the aluminum concentration was too low to permit selective oxidation of …
Date: June 14, 2007
Creator: Marder, Arnold R.
System: The UNT Digital Library
Computational Biology, Advanced Scientific Computing, and Emerging Computational Architectures (open access)

Computational Biology, Advanced Scientific Computing, and Emerging Computational Architectures

This CRADA was established at the start of FY02 with $200 K from IBM and matching funds from DOE to support post-doctoral fellows in collaborative research between International Business Machines and Oak Ridge National Laboratory to explore effective use of emerging petascale computational architectures for the solution of computational biology problems. 'No cost' extensions of the CRADA were negotiated with IBM for FY03 and FY04.
Date: June 27, 2007
Creator: unknown
System: The UNT Digital Library
Development of a Geologic Exploration Model foe the Permo-Pennsylvanian Petroleum System in South-Central Montana (open access)

Development of a Geologic Exploration Model foe the Permo-Pennsylvanian Petroleum System in South-Central Montana

Eolian sands are the main Pennsylvanian Tensleep Sandstone reservoir rocks, and were deposited in a near-shore environment interbedded with near-shore marine and sabkha calcareous and dolomitic rocks. Within the Tensleep, numerous cycles are characterized by basal marine or sabkha calcareous sandstone or dolomitic sandstone overlain by porous and permeable eolian sandstone, which in turn is capped by marine sandstone. The cycles represent the interplay of near-shore marine, sabkha, and eolian environments. On the west side of the project area, both the lower and upper Tensleep are present and the total thickness reaches a maximum of about 240 ft. The lower Tensleep is 100 to 120 ft thick and consists of a sequence of repeating cycles of limey shallow marine sandstone, sandy limestone, and sandy dolomite. The upper Tensleep is generally characterized by cycles of sandy limestone or dolomite, overlain by light-colored, eolian dune sandstone capped by marine limey sandstone. In the central and eastern parts of the project area, only the lower Tensleep is present, but here eolian sandstones are in cycles much like those in the west in the upper Tensleep. The lower Tensleep is quite variable in thickness, ranging from about 25 ft to over 200 ft. Oil …
Date: June 30, 2007
Creator: Lopez, David A.
System: The UNT Digital Library
Final Report on X-ray Yields from OMEGA II Targets (open access)

Final Report on X-ray Yields from OMEGA II Targets

We present details about X-ray yields measured with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) diagnostics in soft and moderately hard X-ray bands from laser-driven, doped-aerogel targets shot on 07/14/06 during the OMEGA II test series. Yields accurate to {+-}25% in the 5-15 keV band are measured with Livermore's HENWAY spectrometer. Yields in the sub-keV to 3.2 keV band are measured with LLNL's DANTE diagnostic, the DANTE yields are accurate to 10-15%. SNL ran a PCD-based diagnostic that also measured X-ray yields in the spectral region above 4 keV, and also down to the sub-keV range. The PCD and HENWAY and DANTE numbers are compared. The time histories of the moderately hard (h{nu} > 4 keV) X-ray signals are measured with LLNL's H11 PCD, and from two SNL PCDs with comparable filtration. There is general agreement between the H11 PCD and SNL PCD measured FWHM except for two of the shorter-laser-pulse shots, which is shown not to be due to analysis techniques. The recommended X-ray waveform is that from the SNL PCD p66k10, which was recorded on a fast, high-bandwidth TDS 6804 oscilloscope. X-ray waveforms from target emission in two softer spectral bands are also shown; the …
Date: June 20, 2007
Creator: Fournier, K. B.; May, M. J.; MacLaren, S. A.; Coverdale, C. A. & Davis, J. F.
System: The UNT Digital Library
Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption (open access)

Carbon Dioxide Separation from Flue Gas by Phase Enhanced Absorption

A new process, phase enhanced absorption, was invented. The method is carried out in an absorber, where a liquid carrier (aqueous solution), an organic mixture (or organic compound), and a gas mixture containing a gas to be absorbed are introduced from an inlet. Since the organic mixture is immiscible or at least partially immiscible with the liquid carrier, the organic mixture forms a layer or small parcels between the liquid carrier and the gas mixture. The organic mixture in the absorber improves mass transfer efficiency of the system and increases the absorption rate of the gas. The organic mixture serves as a transportation media. The gas is finally accumulated in the liquid carrier as in a conventional gas-liquid absorption system. The presence of the organic layer does not hinder the regeneration of the liquid carrier or recovery of the gas because the organic layer is removed by a settler after the absorption process is completed. In another aspect, the system exhibited increased gas-liquid separation efficiency, thereby reducing the costs of operation and maintenance. Our study focused on the search of the organic layer or transportation layer to enhance the absorption rate of carbon dioxide. The following systems were studied, (1) …
Date: June 30, 2007
Creator: Fout, Tim
System: The UNT Digital Library
Multidimensional Conservation Laws and Low Regularity Solutions (open access)

Multidimensional Conservation Laws and Low Regularity Solutions

This is the concluding report for the project, a continuation of research by Keyfitz and co-workers on multidimensional conservation laws, and applications of nonhyperbolic conservation laws in the two-fluid model for multiphase flow. The multidimensional research project was started with Suncica Canic, at the University of Houston and with Eun Heui Kim, now at California State University Long Beach. Two postdoctoral researchers, Katarina Jegdic and Allen Tesdall, also worked on this research. Jegdic's research was supported (for a total of one year) by this grant. Work on nonhyperbolic models for two-phase flows is being pursued jointly with Michael Sever, Hebrew University. Background for the project is contained in earlier reports. Note that in 2006, the project received a one-year no-cost extension that will end in September, 2007. A new proposal, for continuation of the research and for new projects, will be submitted in the Fall of 2007, with funding requested to begin in the summer of 2008. The reason for the 'funding gap' is Keyfitz's four-year stint as Director of the Fields Institute in Toronto, Canada. The research has continued, but has been supported by Canadian grant funds, as seems appropriate during this period.
Date: June 16, 2007
Creator: Keyfitz, Barbara Lee
System: The UNT Digital Library
SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms (open access)

SGP Cloud and Land Surface Interaction Campaign (CLASIC): Measurement Platforms

The Cloud and Land Surface Interaction Campaign (CLASIC) will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of CLASIC includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the ACRF SGP site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations. An overview of the measurement platforms that will be used during the CLASIC are described in this report. The coordination of measurements, especially as it relates to aircraft flight plans, will be discussed in the CLASIC Implementation Plan.
Date: June 1, 2007
Creator: Miller, M. A.; Avissar, R.; Berg, L. K.; Edgerton, S. A.; Fischer, M. L.; Jackson, T. J. et al.
System: The UNT Digital Library
Surface Area, Volume, Mass, and Density Distributions for Sized Biomass Particles (open access)

Surface Area, Volume, Mass, and Density Distributions for Sized Biomass Particles

This final technical report describes work performed at Morehouse College under DOE Grant No. DE-FC26-04NT42130 during the period July 01, 2004 to June 30, 2007 which covers the entire performance period of the project. 25 individual biomass particles (hardwood sawdust AI14546 in the size range of 100-200 microns) were levitated in an electrodynamic balance (EDB) and their external surface area, volume, and drag coefficient/mass (C{sub d}/m) ratios were characterized applying highly specialized video based and high-speed diode array imaging systems. Analysis methods were employed using shape and drag information to calculate mass and density distributions for these particles. Results of these measurements and analyses were validated by independent mass measurements using a particle weighing and counting technique. Similar information for 28 PSOC 1451D bituminous coal particles was retrieved from a previously published work. Using these two information, density correlations for coal/biomass blends were developed. These correlations can be used to estimate the density of the blend knowing either the volume fraction or the mass fraction of coal in the blend. The density correlations presented here will be useful in predicting the burning rate of coal/biomass blends in cofiring combustors. Finally, a discussion on technological impacts and economic projections of burning …
Date: June 30, 2007
Creator: Sampath, Ramanathan
System: The UNT Digital Library
Design and Development of a 100 MVA HTS Generator for Commercial Entry (open access)

Design and Development of a 100 MVA HTS Generator for Commercial Entry

In 2002, General Electric and the US Department of Energy (DOE) entered into a cooperative agreement for the development of a commercialized 100 MVA generator using high temperature superconductors (HTS) in the field winding. The intent of the program was to: (1) identify and develop technologies that would be needed for such a generator; (2) develop conceptual designs for generators with ratings of 100 MVA and higher using HTS technology; (3) perform proof of concept tests at the 1.5 MW level for GE's proprietary warm iron rotor HTS generator concept; and (4) design, build, and test a prototype of a commercially viable 100 MVA generator that could be placed on the power grid. This report summarizes work performed during the program and is provided as one of the final program deliverables. The design for the HTS generator was based on GE's warm iron rotor concept in which a cold HTS coil is wound around a warm magnetic iron pole. This approach for rotating HTS electrical machinery provides the efficiency benefits of the HTS technology while addressing the two most important considerations for power generators in utility applications: cost and reliability. The warm iron rotor concept uses the least amount of …
Date: June 7, 2007
Creator: unknown
System: The UNT Digital Library
High Temperature Steam Electrolysis Materials Degradation: Preliminary Results of Corrosion Tests on Ceramatec Electrolysis Cell Components (open access)

High Temperature Steam Electrolysis Materials Degradation: Preliminary Results of Corrosion Tests on Ceramatec Electrolysis Cell Components

Corrosion tests were performed on stainless steel and nickel alloy coupons in H2O/H2 mixtures and dry air to simulate conditions experienced in high temperature steam electrolysis systems. The stainless steel coupons were tested bare and with one of three different proprietary coatings applied. Specimens were corroded at 850°C for 500 h with weight gain data recorded at periodic intervals. Post-test characterization of the samples included surface and cross-section scanning electron microscopy, grazing incidence x-ray diffraction, and area-specific resistance measurements. The uncoated nickel alloy outperformed the ferritic stainless steel under all test conditions based on weight gain data. Parabolic rate constants for corrosion of these two uncoated alloys were consistent with values presented in the literature under similar conditions. The steel coatings reduced corrosion rates in H2O/H2 mixtures by as much as 50% compared to the untreated steel, but in most cases showed negligible corrosion improvement in air. The use of a rare-earth-based coating on stainless steel did not result in a significantly different area specific resistance values after corrosion compared to the untreated alloy. Characterization of the samples is still in progress and the findings will be revised when the complete data set is available.
Date: June 1, 2007
Creator: Demkowicz, Paul; Sachdev, Prateek; DeWall, Kevin & Medvedev, Pavel
System: The UNT Digital Library
Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion (open access)

Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion

In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared …
Date: June 30, 2007
Creator: Smirniotis, Panagiotis G.
System: The UNT Digital Library
World Best Practice Energy Intensity Values for SelectedIndustrial Sectors (open access)

World Best Practice Energy Intensity Values for SelectedIndustrial Sectors

"World best practice" energy intensity values, representingthe most energy-efficient processes that are in commercial use in atleast one location worldwide, are provided for the production of iron andsteel, aluminium, cement, pulp and paper, ammonia, and ethylene. Energyintensity is expressed in energy use per physical unit of output for eachof these commodities; most commonly these are expressed in metric tonnes(t). The energy intensity values are provided by major energy-consumingprocesses for each industrial sector to allow comparisons at the processlevel. Energy values are provided for final energy, defined as the energyused at the production facility as well as for primary energy, defined asthe energy used at the production facility as well as the energy used toproduce the electricity consumed at the facility. The "best practice"figures for energy consumption provided in this report should beconsidered as indicative, as these may depend strongly on the materialinputs.
Date: June 5, 2007
Creator: Worrell, Ernst; Price, Lynn; Neelis, Maarten; Galitsky,Christina & Zhou, Nan
System: The UNT Digital Library
Argonne Liquid-Metal Advanced Burner Reactor : Components and In-Vessel System Thermal-Hydraulic Research and Testing Experience - Pathway Forward. (open access)

Argonne Liquid-Metal Advanced Burner Reactor : Components and In-Vessel System Thermal-Hydraulic Research and Testing Experience - Pathway Forward.

This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains …
Date: June 30, 2007
Creator: Kasza, K.; Grandy, C.; Chang, Y. & Khalil, H.
System: The UNT Digital Library
Environmental Protection Department, Operations and Regulatory Affairs Division, LLNL NESHAPs 2006 Annual Report (open access)

Environmental Protection Department, Operations and Regulatory Affairs Division, LLNL NESHAPs 2006 Annual Report

NESHAPs limits the emission of radionuclides to the ambient air from DOE facilities to levels resulting in an annual effective dose equivalent (EDE) of 10 mrem (100 {micro}Sv) to any member of the public. The EDEs for the Lawrence Livermore National Laboratory (LLNL) site-wide maximally exposed members of the public from operations in 2006 are summarized here. Livermore site: 0.0045 mrem (0.045 {micro}Sv) (36% from point source emissions, 64% from diffuse source emissions). The point source emissions include gaseous tritium modeled as tritiated water vapor as directed by the U.S. Environmental Protection Agency (EPA) Region IX; the resulting dose is used for compliance purposes. Site 300: 0.016 mrem (0.16 {micro}Sv) (87.5% from point source emissions, 12.5% from diffuse source emissions). The EDEs were calculated using the EPA-approved CAP88-PC air dispersion/dose-assessment model, except for doses for two diffuse sources that were estimated using measured radionuclide concentrations and dose coefficients. Specific inputs to CAP88-PC for the modeled sources included site-specific meteorological data and source emissions data, the latter variously based on continuous stack effluent monitoring data, stack flow or other release-rate information, ambient air monitoring data, and facility knowledge.
Date: June 20, 2007
Creator: Larson, J; Peterson, S & Wilson, K R
System: The UNT Digital Library
Microhole High-Pressure Jet Drill for Coiled Tubing (open access)

Microhole High-Pressure Jet Drill for Coiled Tubing

Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream …
Date: June 30, 2007
Creator: Theimer, Ken & Kolle, Jack
System: The UNT Digital Library
User information for WinGridder Version 3.0 (open access)

User information for WinGridder Version 3.0

WINGRIDDER V3.0 is a Windows-based software for designing and generating numerical grids for numerical simulators that are based on the"integral finite difference" or the"control volume" numerical scheme (e.g., TOUGH2, Pruess et al., 1996). The user can design and generate grid that properly represents the stratigraphic features, inclined faults, and repository. WINGRIDDER V3.0 is an upgrade from WINGRIDDER V2.0. This revision includes testable requirements as listed in the Requirements Document (RD), 10024-RD-3.0-00, Section 2. With new features, WINGRIDDER V3.0 adds the ability to generate a multiple-interactive-continuum (MINC) grid.
Date: June 12, 2007
Creator: Pan, Lehua & Pan, Lehua
System: The UNT Digital Library
EFFECTS OF ONE WEEK TRITIUM EXPOSURE ON EPDM ELASTOMER (open access)

EFFECTS OF ONE WEEK TRITIUM EXPOSURE ON EPDM ELASTOMER

This report documents test results for the exposure of four formulations of EPDM (ethylene-propylene diene monomer) elastomer to tritium gas at one atmosphere for approximately one week and characterization of material property changes and changes to the exposure gas during exposure. All EPDM samples were provided by Los Alamos National Laboratory (LANL). Material properties that were characterized include mass, sample dimensions, appearance, flexibility, and dynamic mechanical properties. The glass transition temperature was determined by analysis of the dynamic mechanical property data per ASTM standards. No change of glass transition temperature due to the short tritium gas exposure was observed. Filled and unfilled formulations of Dupont{reg_sign} Nordel{trademark} 1440 had a slightly higher glass transition temperature than filled and unfilled formulations of Uniroyal{reg_sign} Royalene{reg_sign} 580H; filled formulations had the same glass transition as unfilled. The exposed samples appeared the same as before exposure--there was no evidence of discoloration, and no residue on stainless steel spacers contacting the samples during exposure was observed. The exposed samples remained flexible--all formulations passed a break test without failing. The unique properties of polymers make them ideal for certain components in gas handling systems. Specifically, the resiliency of elastomers is ideal for sealing surfaces, for example in …
Date: June 7, 2007
Creator: Clark, E
System: The UNT Digital Library
Summary of Natural Resources that Potentially Influence Human Intrusion at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada (open access)

Summary of Natural Resources that Potentially Influence Human Intrusion at the Area 5 Radioactive Waste Management Site, Nevada Test Site, Nye County, Nevada

In 1993, Raytheon Services Nevada completed a review of natural resource literature and other sources to identify potentially exploitable resources and potential future land uses near the Area 5 Radioactive Waste Management Site (RWMS) of the Nevada Test Site (NTS), Nye County, Nevada, that could lead to future inadvertent human intrusion and subsequent release of radionuclides to the accessible environment. National Security Technologies, LLC, revised the original limited-distribution document to conform to current editorial standards and U.S. Department of Energy requirements for public release. The researchers examined the potential for future development of sand, gravel, mineral, petroleum, water resources, and rural land uses, such as agriculture, grazing, and hunting. The study was part of the performance assessment for Greater Confinement Disposal boreholes. Sand and gravel are not considered exploitable site resources because the materials are common throughout the area and the quality at the Area 5 RWMS is not ideal for typical commercial uses. Site information also indicates a very low mineral potential for the area. None of the 23 mining districts in southern Nye County report occurrences of economic mineral deposits in unconsolidated alluvium. The potential for oil and natural gas is low for southern Nye County. No occurrences …
Date: June 1, 2007
Creator: National Security Technologies, LLC
System: The UNT Digital Library
Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma (open access)

Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

Hunton formation in Oklahoma has been the subject of attention for the last ten years. The new interest started with the drilling of the West Carney field in 1995 in Lincoln County. Subsequently, many other operators have expanded the search for oil and gas in Hunton formation in other parts of Oklahoma. These fields exhibit many unique production characteristics, including: (1) decreasing water-oil or water-gas ratio over time; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can optimize the production from fields with similar characteristics.
Date: June 30, 2007
Creator: Kelkar, Mohan
System: The UNT Digital Library