NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: April-June 2005 (open access)

NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: April-June 2005

This is the twentieth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost-effective analysis tools and techniques for demonstrating and evaluating low-NO{sub x} control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. At the beginning of this quarter, the corrosion probes were removed from Gavin Station. Data analysis and preparation of the final report continued this quarter. This quarterly report includes further results from the BYU catalyst characterization lab and the in-situ FTIR lab, and includes the first results from tests run on samples cut from the commercial plate catalysts. The SCR slipstream reactor at Plant Gadsden was removed from the plant, where the total exposure time on flue gas was 350 hours. A computational framework for SCR deactivation was added to the SCR model.
Date: June 30, 2005
Creator: Bockelie, Mike; Davis, Kevin; Denison, Martin; Senior, Connie; Shim, Hong-Shig; Shino, Darren et al.
System: The UNT Digital Library
NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: April-June 2003 (open access)

NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: April-June 2003

This is the twelfth Quarterly Technical Report for DOE Cooperative Agreement No: DE-FC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. This program contains multiple tasks and good progress is being made on all fronts. During this quarter, a new effort was begun on the development of a corrosion management system for minimizing the impacts of low NOx combustion systems on waterwalls; a kickoff meeting was held at the host site, AEP's Gavin Plant, and work commenced on fabrication of the probes. FTIR experiments for SCR catalyst sulfation were finished at BYU and indicated no vanadium/vanadyl sulfate formation at reactor conditions. Improvements on the mass-spectrometer system at BYU have been made and work on the steady state reactor system shakedown neared completion. The slipstream reactor continued to operate at AEP's Rockport plant; at the end of the quarter, the catalysts had been exposed to flue gas for about 1000 hours. Some operational problems were addressed that enable the reactor to run without …
Date: June 30, 2003
Creator: Bockelie, Mike; Davis, Kevin; Linjewile, Temi; Senior, Connie; Eddings, Eric; Whitty, Kevin et al.
System: The UNT Digital Library
NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: April-June 2004 (open access)

NOx Control Options and Integration for US Coal Fired Boilers Quarterly Progress Report: April-June 2004

This is the sixteenth Quarterly Technical Report for DOE Cooperative Agreement No: DEFC26-00NT40753. The goal of the project is to develop cost effective analysis tools and techniques for demonstrating and evaluating low NOx control strategies and their possible impact on boiler performance for boilers firing US coals. The Electric Power Research Institute (EPRI) is providing co-funding for this program. During an unplanned outage, damage occurred to the electrochemical noise corrosion probes installed at the AEP Gavin plant; testing is expected to resume in August. The KEMCOP corrosion coupons were not affected by the unplanned outage; the coupons were removed and sent for analysis. BYU conducted a series of tests before the ISSR lab was relocated. Ammonia adsorption experiments provided clear evidence of the types of acidic sites present on catalyst surfaces. Data collected this quarter indicate that surface sulfation decreases Lewis acid site concentrations for all catalysts thus far studied, confirming that catalytic activity under commercial coal-based SCR conditions occurs primarily on Br{o}nsted acid sites and would be susceptible to basic impurities such as alkali and alkaline earth oxides, chlorides, and sulfates. SCR activity tests based on MS analysis showed that increasing sulfation generally increases NO reduction activity for both …
Date: June 30, 2004
Creator: Bockelie, Mike; Davis, Kevin; Linjewile, Temi; Senior, Connie; Eddings, Eric; Whitty, Kevin et al.
System: The UNT Digital Library