High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs Quarterly Report (open access)

High Resolution Prediction of Gas Injection Process Performance for Heterogeneous Reservoirs Quarterly Report

This report presents a detailed analysis of the development of miscibility during gas cycling in condensates and the formation of condensate banks at the leading edge of the displacement front. Dispersion-free, semi-analytical one-dimensional (1D) calculations are presented for enhanced condensate recovery by gas injection. The semi-analytical approach allows investigation of the possible formation of condensate banks (often at saturations that exceed the residual liquid saturation) and also allows fast screening of optimal injection gas compositions. We describe construction of the semi-analytical solutions, a process which differs in some ways from related displacements for oil systems. We use an analysis of key equilibrium tie lines that are part of the displacement composition path to demonstrate that the mechanism controlling the development of miscibility in gas condensates may vary from first-contact miscible drives to pure vaporizing and combined vaporizing/condensing drives. Depending on the compositions of the condensate and the injected gas, multicontact miscibility can develop at the dew point pressure, or below the dew point pressure of the reservoir fluid mixture. Finally, we discuss the possible impact on performance prediction of the formation of a mobile condensate bank at the displacement front in near-miscible gas cycling/injection schemes.
Date: June 30, 2003
Creator: Orr, Franklin M., Jr.
System: The UNT Digital Library